K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2022

a ) .Xét t/g ABM và t/g NBM có:

AB là đường kính của đường trong (O)

nên : góc ABM = góc NMB = 90 độ

M là điểm chính giữa của cung nhỏ AC 

nên : góc ABM = góc MBN=>góc BAM  = góc BNM

=> t/g BAN cân tại đỉnh B

Tứ giác AMCB nội tiếp 

=> góc BAM = góc MCN ( cùng bù với góc MCB )

=> góc MCN = góc MNC ( cùng bằng góc BAM)

=> t/g MCN cân tại đỉnh M

b) .

Xét t/g MCB và t/g MNQ ta có:

MC = MN ( theo cm trên : MCN cân)  ; MB =MQ ( theo giả thiết)

góc BMC = góc MNQ ( vì : góc MCB = góc MNC ; góc MBC = góc MQN ).

=> t/g MCB = t/g MNQ ( c.g.c ) => BC = NQ

Xét t/g vuông ABQ ta có:

AC vuông góc BQ => \(AB^2=BC.BQ=BC.\left(BN+NQ\right)\)

=> \(AB^2=BC.\left(AB+AC\right)=BC.\left(BC+2R\right)\)

=> \(4R^2=BC\left(BC+2R\right)\Rightarrow BC=\left(\sqrt{5}-1\right)R\)

NV
21 tháng 12 2020

\(\widehat{IAF}=\widehat{CAF}\)

\(\widehat{CFA}+\widehat{CAF}=90^0\)

\(\widehat{BAF}+\widehat{IAF}=90^0\)

\(\Rightarrow\widehat{CFA}=\widehat{BAF}\)

c.

O là trung điểm AB, G là trung điểm AI \(\Leftrightarrow\) OG là đường trung bình ABI

\(\Rightarrow OG//BI\Rightarrow OG\perp AC\)

Mà \(OA=OC\Rightarrow OG\) là trung trực AC

\(\Rightarrow AG=CG\Rightarrow CG\) là tiếp tuyến

13 tháng 1 2017

(Quá lực!!!)

E N A B C D O H L

Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.

Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).

Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.

Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).

-----

Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).

Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)