K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2022

a ) .Xét t/g ABM và t/g NBM có:

AB là đường kính của đường trong (O)

nên : góc ABM = góc NMB = 90 độ

M là điểm chính giữa của cung nhỏ AC 

nên : góc ABM = góc MBN=>góc BAM  = góc BNM

=> t/g BAN cân tại đỉnh B

Tứ giác AMCB nội tiếp 

=> góc BAM = góc MCN ( cùng bù với góc MCB )

=> góc MCN = góc MNC ( cùng bằng góc BAM)

=> t/g MCN cân tại đỉnh M

b) .

Xét t/g MCB và t/g MNQ ta có:

MC = MN ( theo cm trên : MCN cân)  ; MB =MQ ( theo giả thiết)

góc BMC = góc MNQ ( vì : góc MCB = góc MNC ; góc MBC = góc MQN ).

=> t/g MCB = t/g MNQ ( c.g.c ) => BC = NQ

Xét t/g vuông ABQ ta có:

AC vuông góc BQ => \(AB^2=BC.BQ=BC.\left(BN+NQ\right)\)

=> \(AB^2=BC.\left(AB+AC\right)=BC.\left(BC+2R\right)\)

=> \(4R^2=BC\left(BC+2R\right)\Rightarrow BC=\left(\sqrt{5}-1\right)R\)

10 tháng 6 2019

Em không vẽ được hình, xin thông cảm

a, Ta có góc EAN=  cungEN=cung EC+ cung EN

Mà cung EC= cung EB(E là điểm chính giữa cung BC)

=> góc EAN=cungEB+ cung EN=góc DFE (tính chất góc ở giữa)

=> tam giác AEN đồng dạng tam giác FED

Vậy tam giác AEN đồng dạng tam giác FED

b,Ta có EC=EB=EM

Tam giác EMC cân tại E => EMC=ECM

 MÀ EMC+AME=180, ECM+ABE=180

=> AME = ABE

=> tam giác ABE= tam giác AME

=> AB=AM => tam giác ABM cân tại A

Mà AE là phân giác => AE vuông góc BM

CMTT => AC vuông góc EN

MÀ AC giao BM tại M

=> M là trực tâm tam giác AEN

Vậy M là trực tâm tam giác AEN

c,  Gọi H là giao điểm OE với đường tròn (O) (H khác E) => O là trung điểm của EH

Vì M là trực tâm của tam giác AEN

=> \(EN\perp AN\)

Mà \(OI\perp AN\)(vì I là trung điểm của AC)

=> \(EN//OI\)

MÀ O là trung điểm của EH

=> I là trung điểm của MH (đường trung bình trong tam giác )

=> tứ giác AMNH là hình bình hành 

=> AH=MN

Mà MN=NC

=> AH=NC

=> cung AH= cung NC

=> cung AH + cung KC= cung KN

Mà cung AH+ cung KC = góc KMC(tính chất góc ở giữa 2 cung )

NBK là góc nội tiếp chắn cung KN

=> gócKMC=gócKBN

Hay gócKMC=gócKBM

=> CM là tiếp tuyến của đường tròn ngoại tiếp tam giác MBK( ĐPCM)

Vậy CM là tiếp tuyến của đường tròn ngoại tiếp tam giác BMK

10 tháng 6 2019

Anh Khang nè,e cung cấp hình nha:3

Bài 1:Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:a) Góc AHN = ACBb) Tứ giác BMNC nội tiếp.c) Điểm I là trực tâm tam giác APQ.Bài 2:Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là...
Đọc tiếp

Bài 1:

Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:

a) Góc AHN = ACB

b) Tứ giác BMNC nội tiếp.

c) Điểm I là trực tâm tam giác APQ.

Bài 2:

Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là điểm chính giữa của các cung nhỏ AC và BC. Các đường thẳng BN và AC cắt nhau tại I, các dây cung AN và BC cắt nhau ở P. Chứng minh:

a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó.

b) KN là tiếp tuyến của đường tròn (O; R).

c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định.

 

0