Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải:
ad - bc = 1 nên ad lớn hơn ac 1 đơn vị
=> bc - ad = -1
so sánh: \(y\)và \(t=\frac{a+m}{b+m}\)
ta so sánh: \(\frac{c}{d}\)và \(\frac{a+m}{b-m}\)
ta xét hiệu của \(\left[c\left(b-m\right)\right]-\left[d\left(a+m\right)\right]\)
\(=\left(bc+cn\right)-\left(ad+md\right)\)
\(=bc+cn-ad-md\)
\(=\left(bc-ad\right)+\left(cn-md\right)\)
\(=-1+0\)
\(=-1\)
\(\Rightarrow\)\(c\left(b+n\right)< d\left(a+m\right)\)
\(\Rightarrow\)\(\frac{c}{d}< \frac{a+m}{b+n}\)
vậy \(y< t\)
Vì a,b,c,d \(\inℕ^∗\Rightarrow a+b+c< +b+c+d\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
Tương tự
\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)
\(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)
\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)
Vì a,b,c,d \(\inℕ^∗\)\(\Rightarrow a+b+c>a+b\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)
Tương tự
\(\hept{\begin{cases}\frac{b}{a+b+d}< \frac{b}{a+b}\\\frac{c}{a+c+d}< \frac{c}{c+d}\\\frac{d}{b+c+d}< \frac{d}{a+b+c+d}\end{cases}}\)
\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)
Vậy \(1< M< 2\)nên M không là số tự nhiên
1. Với a, b ∈ Z, b> 0
- Khi a , b cùng dấu thì \(\frac{a}{b}\) > 0
- Khi a,b khác dấu thì \(\frac{a}{b}\)< 0
Tổng quát: Số hữu tỉ \(\frac{a}{b}\) (a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0
2. Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
Đơn giản thôi!!
Từ giả thiết, suy ra
\(\frac{x}{a+2b+c}=\frac{2y}{4a+2b-2c}=\frac{z}{4a-4b+c}=\frac{x+2y+z}{9a}\) (1)
\(\frac{2x}{2a+4b+2c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{2x+y-z}{9b}\) (2)
\(\frac{4x}{4a+8b+4x}=\frac{4y}{8a+4b-4c}=\frac{z}{4a-4b+c}=\frac{4x-4y+x}{9c}\) (3)
Từ (1) , (2) và (3) suy ra:
\(\frac{x+2y+z}{9a}=\frac{2x+y-z}{9b}=\frac{4x-4y+z}{9c}\)
\(\frac{9a}{x+2y+z}-\frac{9b}{2x+y-z}=\frac{9c}{4x-4y+z}\)
\(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}^{\left(đpcm\right)}\)
* So sánh \(\frac{a}{b}and\frac{a+c}{b+d}\)
\(\frac{a}{b}=\frac{a.\left(b+d\right)}{b.\left(b+d\right)}\) và \(\frac{a+c}{b+d}=\frac{\left(a+c\right).b}{\left(b+d\right).b}\)
TỪ đây ta so sánh a.(b+d) và ( a+ c).b
a.( b+d) = ab+ ad
(a+c). b = ab+ bc
Nếu \(\frac{a}{b}>\frac{c}{d}\)thì x> z
nếu \(\frac{a}{b}< \frac{c}{d}\)thì x < z
nếu \(\frac{a}{b}=\frac{c}{d}\)thì x = z
So sánh y và z cũng tương tự!