Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M không có giá trị tự nhiên vì để m là số tự nhiên thì các phân số phải là số tự nhiên mà tử số lớn hơn mẫu số nên số đó không phải là số tự nhiên
\(M=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{a+c+d}+\frac{d}{b+c+d}>\frac{a+b+c+d}{a+b+c+d}=1\)
Chứng minh tương tự để từ đó
=>M<2
Vậy 1<M<2
=> M ko là số tự nhiên
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
a. Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
b.
C\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)=2.\left(2+1\right)+2^3.\left(2+1\right)+...+2^{59}.\left(2+1\right)\)
\(=2.3+2^3.3+...+2^{59}.3=\left(2+2^3+...+2^{59}\right).3\)chia hết cho 3
C \(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2.\left(1+2+4\right)+2^4.\left(1+2+4\right)+...+2^{58}\left(1+2+4\right)\)
\(=2.7+2^4.7+...+2^{58}.7=\left(2+2^4+...+2^{58}\right).7\)chia hết cho 7
C \(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2.\left(1+2+4+8\right)+...+2^{57}.\left(1+2+4+8\right)\)
\(=2.15+...+2^{57}.15=\left(2+...+2^{57}\right).15\)chia hết cho 15
đúng cái nha
\(M=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{a+c+d}+\frac{d}{b+c+d}\)\(=\frac{a+b+c+d}{a+b+c+a+b+d+a+c+d+b+c+d}\)
\(=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)
vậy M không phải là số tự nhiên
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
Vì a,b,c,d \(\inℕ^∗\Rightarrow a+b+c< +b+c+d\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
Tương tự
\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)
\(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)
\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)
Vì a,b,c,d \(\inℕ^∗\)\(\Rightarrow a+b+c>a+b\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)
Tương tự
\(\hept{\begin{cases}\frac{b}{a+b+d}< \frac{b}{a+b}\\\frac{c}{a+c+d}< \frac{c}{c+d}\\\frac{d}{b+c+d}< \frac{d}{a+b+c+d}\end{cases}}\)
\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)
Vậy \(1< M< 2\)nên M không là số tự nhiên