Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đề bài \(\Rightarrow a^2+b^2-2ab-8a=0\Leftrightarrow\left(a-b\right)^2=8a\)
Hay \(\left(a-b\right)^2=4.2a\)
Vì \(\left(a-b\right)^2;4\)là số chính phương nên \(2a\) là số chính phương chẵn \(\Rightarrow2a=4k^2\left(k\in Z\right)\)
Do đó \(a=2k^2⋮2\) và \(\frac{a}{2}=k^2\) là số chính phương (ĐPCM)
thử bài bất :D
Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)
Hoàn toàn tương tự:
\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)
\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)
Cộng (*),(**),(***) vế theo vế ta được:
\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)
Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )
Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D
Chứng minh rằng nếu các số tự nhiên a,b,c thỏa mãn điều kiện a^2 + b^2 = c^2 thì abc chia hết cho 60
Giả sử a,b,c đều không chia hết cho 3 thì phải chia 3 dư 1
thay vào chia 3 dư 2 còn chia 3 dư 1 (loại)
Do đó a,b,c phải tồn tại một số chia hết cho 3 ,
Lại chúng minh tương tự để đc một trong 3 số chia hết cho 4 và 5
Rồi suy ra abc chia hêt cho 3.4.5 = 60
Giả sử a,b,c đều không chia hết cho 3 thì phải chia 3 dư 1
thay vào chia 3 dư 2 còn chia 3 dư 1 (loại)
Do đó a,b,c phải tồn tại một số chia hết cho 3 ,
Lại chúng minh tương tự để đc một trong 3 số chia hết cho 4 và 5
suy ra abc chia hêt cho 3.4.5 = 60
Câu hỏi của sjfdksfdkjlsjlfkdjdkfsl - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo link này.