K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2016

a/ Gọi phương trình đường thẳng cần tìm có dạng: y = ax + b

Vì đường thẳng đi qua A,B nên ta có hệ

\(\hept{\begin{cases}0=2a+b\\-2=b\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-2\end{cases}}}\)

Vậy phương trình đường thẳng AB là:

\(y=x-2\)

b/ Ta chứng minh C thuộc đường AB

Ta thế tọa độ điểm C vào đường thẳng AB thì được

\(1=3-2\)(đúng)

Vậy C thuộc đường thẳng AB hay A,B,C thẳng hàng

17 tháng 2 2021

gọi pttq có dạng y=ax+b

đt đi qua A => 7=a+b (1)

đt đi qua B => 1=-a+b (2) 

(1),(2) => a=3;b=4 

=> đt đi qua A và B: (d):y=3x+4

Thay C vào đt (d) tm => 3 điểm A,B,C thẳng hàng => dpcm

 

 

17 tháng 2 2021

á ghê, nay chăm thế :)))

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

Lời giải:

a. Gọi ptdt $(d)$ đi qua $A,B$ là $y=ax+b$

Ta có: \(\left\{\begin{matrix} y_A=ax_A+b\\ y_B=ax_B+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2=a+b\\ 1=a.0+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=1\\ a=1\end{matrix}\right.\)

Vậy ptđt $(d)$ là: $y=x+1$

b. Ta thấy: $y_C=-4=-5+1=x_C+1$ nên $C\in (d): y=x+1$
Tức là $C$ thuộc đt đi qua 2 điểm $A,B$

$\Rightarrow A,B,C$ thẳng hàng.

NV
13 tháng 12 2020

a. Gọi pt đường thẳng AB có dạng \(y=ax+b\)

Do đường thẳng AB qua A và B nên ta có:

\(\left\{{}\begin{matrix}2a+b=3\\-a+b=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)

Phương trình AB: \(y=2x-1\) \(\Rightarrow\) hệ số góc \(a=2\)

b. Thay tọa độ C vào pt AB:

\(-1=2.0-1\) (thỏa mãn)

\(\Rightarrow C\) thuộc đường thẳng AB hay 3 điểm A;B;C thẳng hàng

13 tháng 12 2020

undefined

23 tháng 9 2021

Giả sử đường thẳng d đi qua A và B có dạng: `y=ax+b`

Đường thẳng d đi qua A và B là nghiệm của hệ: `{(2=a.1+b),(0=a.(-1)+b):}`

`<=> {(a=1),(b=1):}`

`=> d:\ y=x+1`

`=> C\ in (d)`

`=>` A,B,C thẳng hàng.

Đường thẳng đi qua 3 điểm đó là: `y=x+1`.

 

23 tháng 9 2021

bạn ơi sao lại => C ∈ (d) vậy

 

NV
26 tháng 2 2020

Gọi pt đường thẳng AB có dạng \(y=ax+b\), do AB đi qua A và B nên:

\(\left\{{}\begin{matrix}a+b=-1\\2a+b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=-3\end{matrix}\right.\) \(\Rightarrow y=2x-3\)

Gọi pt đường thẳng AC có dạng \(y=cx+d\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=-1\\-3a+b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{1}{2}\\b=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow y=-\frac{1}{2}x-\frac{1}{2}\)

Do tích 2 hệ số góc \(2.\left(-\frac{1}{2}\right)=-1\Rightarrow\) AB và AC vuông góc

30 tháng 10 2021

tại sao a=2 ? 

giải thik cho mik hiểu dc ko