K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2021

\(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)

\(a)\)

\(\text{Để A có giá trị nguyên: }\)

\(\frac{9}{x-4}\in Z\)

\(x-4\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

\(\rightarrow x\in\left\{1;3;\pm5;7;13\right\}\)

\(b)\)

\(\text{Để A có giá trị lớn nhất: }\)

\(\frac{9}{x-4}\)\(\text{lớn nhất}\)

\(x-4=1\)

\(x=5\)

\(c)\)

\(\text{Để A đạt giá trị nhỏ nhất:}\)

\(\frac{9}{x-4}\)\(\text{nhỏ nhất}\)

\(x-4=-1\)

\(x=3\)

Cho \(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\left(ĐK:x\in Z,x\ne4\right)\)

Để A nguyên \(\Rightarrow9⋮x-4\)hay \(x-4\inƯ\left(9\right)\)

Ta có \(x-4\inƯ\left(9\right)\in\left\{\pm1;\pm3;\pm9\right\}\)

\(\Rightarrow x\in\left\{5;3;7;1;13;-5\right\}\)

b, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{max}\)khi \(B_{max}\)

Vì \(9>0\)để B đặt GTLN \(\Rightarrow\hept{\begin{cases}x-4>0\\\left(x-4\right)_{min}\end{cases}}\)

Mà \(x\in N\)\(\Rightarrow x-4=1\)

\(\Rightarrow x=5\)

\(\Rightarrow B_{max}=\frac{9}{5-4}=9\)

\(\Rightarrow A_{max}=1+9=10\)khi \(x=5\)

c, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{min}\)khi \(B_{min}\)

Vì \(9>0\)để B đạt GTNN \(\Rightarrow\hept{\begin{cases}x-4< 0\\\left(x-4\right)_{max}\end{cases}}\)

Mà \(x\in N\)\(\Rightarrow x-4\in Z\)

\(\Rightarrow x-4=-1\)

\(\Rightarrow x=3\)

\(\Rightarrow B_{min}=\frac{9}{3-4}=-9\)

\(\Rightarrow A_{min}=1+\left(-9\right)=\left(-8\right)\)khi \(x=3\)

Bài 2: 

a: =>x=0 hoặc x+3=0

=>x=0 hoặc x=-3

b: =>x-2=0 hoặc 5-x=0

=>x=2 hoặc x=5

c: =>x-1=0

hay x=1

2 tháng 4 2018

a) Đk: x#2 (*) 
Với (*), A=(x - 2 + 5)/(x - 2)= 1 + 5/(x - 2) 
A nguyên <=> x-2 thuộc Ư(5)={-5;-1;1;5} 
=> S={-3;1;3;7} 

4 tháng 3 2016

                                                                                                                         BÀI GIẢI

a, x để giá trị của A chia hết cho 2

A=2+27 +x (x thuộc z)

=> A= 29+x chia hết cho 2  

 vì x thuộc z => x thuộc {1 ;3;5;7;9;11;..............}

x thuộc {-1 ; -3 ; -5 ; ............}

b, vì x =2k mà A=29 +x   ; 29 không chia hết cho 2 và x chia hết cho 2

=>A không chia hết cho 2

8 tháng 5 2016

a)Ta có ; để A thuộc N <=> (2n+5) chia hết cho (3n+1)

<=> 3(2n+5) chia hết cho (3n+1)

<=>(6n+15) chia hết cho (3n+1)

<=> (6n + 2 +13) chia hết cho (3n+1)

<=> 13 chia hết cho (3n+1)

=> (3n+1) thuộc Ư(13)

Vì n thuộc N

=> (3n+1) = 1,13

=> n = 0 hoặc 4

b)Trong phần này ta sẽ áp dung 1 tính chất sau:

a/b < (a+m)/(b+m)      với a<b

Ta thấy :

x/(x+y)  >  x/(x+y+z)

y/(y+z) > y/(x+y+z)

z/(z+x) > z/(x+y+z)

=> A > x/(x+Y+z) + y/(x+y+z) + z/(x+y+z)

=> A>1

Ta thấy :

x/x+y < (x+z)/(x+y+z)

y/y+z < (y+x)/(x+y+z)

z/z+x < (z+y)/(x+y+z)

=> A < (x+z)/(x+y+z) +(y+x)/(x+y+z) +(z+y)/(x+y+z)

=>A< 2(x+y+z)/(x+y+z)

=> A<2

=>1<A<2

=> A ko phải là số nguyên(đpcm)

28 tháng 5 2021

Ta có :\(A=\frac{x^2+3x+1}{x+2}=\frac{x^2+2x+x+2-1}{x+2}=\frac{x\left(x+2\right)+x+2-1}{x+2}=\frac{\left(x+1\right)\left(x+2\right)-1}{x+2}\)

\(=x+1-\frac{1}{x+2}\)

Để A nguyên => \(\frac{1}{x+2}\inℤ\Rightarrow1⋮x+2\Rightarrow x+2\inƯ\left(1\right)\)

=> \(x+2\in\left\{-1;1\right\}\)

=> x \(\in\left\{-3;-1\right\}\)

Vậy  x \(\in\left\{-3;-1\right\}\)thì A nguyên 

28 tháng 5 2021

Thank You!

26 tháng 5 2020

a) A = \(\frac{3x+1}{x-1}\)

A là phân số <=> x - 1 \(\ne\)0 <=> x \(\ne\)1

b) A là số nguyên âm 

TH1: x - 1 > 0 => x > 1 => 3x + 1 > 0 

=> A là số nguyên dương => loại 

TH2: x - 1 < 0 => x < 1  mà x nguyên dương nên 

 x = 0 => 3x + 1 = 1 > 0 => A < 0 => Thỏa mãn

Vậy x = 0 thỏa mãn 

c) A nhận giá trị nguyên dương lớn nhất 

Ta có: \(A=\frac{3x+1}{x-1}=\frac{3x-3+4}{x-1}=3+\frac{4}{x-1}\)

A nguyên dương lớn nhất <=> \(\frac{4}{x-1}\) nguyên dương lớn nhất 

<=> \(x-1>0;x-1\inƯ\left(4\right);x-1\)bé nhất 

=> x - 1 = 1

=> x = 2  thỏa mãn

khi đó A = 7 thỏa mãn

Vậy x = 2 thì A lớn nhất bằng 7