Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Để $B$ là phân số thì $x+3\neq 0\Leftrightarrow x\neq -3$
b. Để $B$ nhận giá trị nguyên thì $x+3$ là ước của $7$
$\Rightarrow x+3\in\left\{1;-1;7;-7\right\}$
$\Rightarrow x\in\left\{-2; -4; 4; -10\right\}$
c. Để $B< 0$ thì $7$ và $x+3$ trái dấu nhau. Mà $7>0$ nên $x+3<0$
$\Leftrightarrow x<-3$
d. Để $B$ đạt giá trị lớn nhất thì $x+3$ là số dương nhỏ nhất.
Với $x$ nguyên, $x+3$ dương nhỏ nhất bằng $1$
Khi đó: $B_{\max}=\frac{7}{1}=7$. Giá trị này đạt tại $x+3=1$ hay $x=-2$
a) để A là phân số thì x+1 khác không hay x khác -1, x thuộc Z
b) để A không là phân số suy ra x=1
c) nếu x=-5 thì A=\(\frac{-9}{-4}\)
d)để A là số nguyên thì 2X+1 chia hết x+1 suy ra 1 chia hết x+1 suy ra x=0:-2
e)để A đạt GTLN thf x+1 phải nguyên dương và bé nhất =1 vậy để A đạt GTLN thì x=0
a) A = \(\frac{3x+1}{x-1}\)
A là phân số <=> x - 1 \(\ne\)0 <=> x \(\ne\)1
b) A là số nguyên âm
TH1: x - 1 > 0 => x > 1 => 3x + 1 > 0
=> A là số nguyên dương => loại
TH2: x - 1 < 0 => x < 1 mà x nguyên dương nên
x = 0 => 3x + 1 = 1 > 0 => A < 0 => Thỏa mãn
Vậy x = 0 thỏa mãn
c) A nhận giá trị nguyên dương lớn nhất
Ta có: \(A=\frac{3x+1}{x-1}=\frac{3x-3+4}{x-1}=3+\frac{4}{x-1}\)
A nguyên dương lớn nhất <=> \(\frac{4}{x-1}\) nguyên dương lớn nhất
<=> \(x-1>0;x-1\inƯ\left(4\right);x-1\)bé nhất
=> x - 1 = 1
=> x = 2 thỏa mãn
khi đó A = 7 thỏa mãn
Vậy x = 2 thì A lớn nhất bằng 7