K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

ta có : a+ b+ c=0

=>(a+b+c)^2=0

<=>a^2+b^2+c^2+2ac+2ab+2bc=0

=>a^2+b^2+c^2=-2ac-2ab-2bc=-2(ac+ab+bc)=-2.0=0

=>a=b=c=0

nên A =(a-1)^2015  + b^2016  + (c+1)^2017

=(0-1)2015 + 0^2016 +(0+ 1)^2017

=-1 +1

=0

23 tháng 10 2018

\(a^2+b^2+c^2=ab+bc+ac\)

\(a^2+b^2+c^2-ab-bc-ac=0\)

\(2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\forall a;b;c\)

\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c}\)

\(\Rightarrow\left(a-b+1\right)^{2018}+\left(b-c-1\right)^{2017}+\left(a-c\right)^{2016}\)

\(=\left(a-a+1\right)^{2018}+\left(c-c-1\right)^{2017}+\left(a-a\right)^{2016}\)

\(=1^{2018}+\left(-1\right)^{2017}+0^{2016}\)

\(=1+\left(-1\right)+0\)

\(=0\)

Vậy......

P.s: các phần thay a=b=c vào biểu thức có thể thay toàn bộ bằng a hoặc bằng b hoặc bằng c đều được nha 

11 tháng 7 2017

Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

\(\Rightarrow a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ac\right)\)

\(\Rightarrow a^2+b^2+c^2=0-2\cdot0\)

\(\Rightarrow a=b=c=0\)

Thế kết quả vào: \(\left(0-2017\right)^{2018}+\left(0-2017\right)^{2018}-\left(0+2017\right)^{2018}=2017^{2018}\)

Ps: \(\left(-2017\right)^{2018}=2017^{2018}\)

27 tháng 11 2019

a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)

Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)nên:

(1) xảy ra\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)

4 tháng 6 2020

ai làm giúp em phép tính này với em làm mãi ko dc ạ 

bài 5 tính nhanh

a 100 -99 +98 - 97 + 96 - 95 + ... + 4 -3 +2 

b 100 -5 -5 -...-5 ( có 20 chữ số 5 )

c 99- 9 -9 - ... -9 ( có 11 chữ số 9 ) 

d 2011 + 2011 + 2011 + 2011 -2008 x 4

i 14968+ 9035-968-35

k 72 x 55 + 216 x 15 

l 2010 x 125 + 1010 / 126 x 2010 -1010

e 1946 x 131 + 1000 / 132 x 1946 -946

g 45 x 16 -17 / 45 x 15 + 28 

h 253 x 75 -161 x 37 + 253 x 25 - 161 x 63 / 100 x 47 -12 x 3,5 - 5,8 : 0,1

13 tháng 12 2016

Ta có: \(a+b+c=0\)

\(=>\left(a+b+c\right)^2=0\)

\(=>a^2+b^2+c^2+2ab+2bc+2ac=0\)

\(=>a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(=>a^2+b^2+c^2=0\)

\(=>a^2+b^2+c^2=ab+bc+ac\)

\(=>2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)

\(=>\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)(nhân phân phối, đổi qua bên kia dấu bằng, tách thành hằng đẳng thức)

\(=>\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(=>\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}}\)

\(=>a=b=c=0\)

***\(A=\left(a-1\right)^{22}+b^{12}+\left(c-1\right)^{2014}\)

\(A=\left(-1\right)^{22}+1+\left(-1\right)^{2014}\)

\(A=1+1+1\)

\(A=3\)

13 tháng 12 2016

Ta có

a + b + c = 0

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow\)a2 + b2 + c2 = ab + bc + ca

Mà ta có a2 + b2 + c2 \(\ge\) ab + bc + ca

Dấu = xảy ra khi a = b = c = 0

\(\Rightarrow\)(a - 1)22 + b12 + (c - 1)2014 = 1 + 0 + 1 = 2

6 tháng 11 2018

\(\text{Ta có: }\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0.\)

\(\Leftrightarrow bc+ac+ab=0\Rightarrow\hept{\begin{cases}bc=-ac-ab\\ac=-bc-ab\\ab=-bc-ac\end{cases}}\)

\(\Rightarrow BT\text{hức}=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\)

\(=\frac{bc}{a^2-ac-ab+bc}+\frac{ac}{b^2-bc-ab+ac}+\frac{ab}{c^2-bc-ac+ab}\)

\(=\frac{bc}{a\left(a-b\right)-c\left(a-b\right)}+\frac{ac}{b\left(b-a\right)-c\left(b-a\right)}+\frac{ab}{c\left(c-a\right)-b\left(c-a\right)}\)

\(=\frac{bc}{\left(a-c\right)\left(a-b\right)}-\frac{ac}{\left(b-c\right)\left(a-b\right)}+\frac{ab}{\left(a-c\right)\left(b-c\right)}\)

\(=\frac{bc\left(b-c\right)-ac\left(a-c\right)+ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{b^2c-bc^2-a^2c+ac^2+ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{c\left(b^2-a^2\right)-c^2\left(b-a\right)+ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{c^2\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+ab\left(a+b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{\left(a-b\right)\left(c^2-ac-bc+ab\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{c\left(c-b\right)-a\left(c-b\right)}{\left(b-c\right)\left(a-c\right)}=\frac{\left(a-c\right)\left(b-c\right)}{....}=1\)

Lâu ko lm đổi dấu hơi thừa ra!! ko hiểu chỗ nào thì ib mk giải thích cho