K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

Bài 3: 

a: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab=7^2-4\cdot12=1\)

b: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=7^3-3\cdot12\cdot7\)

\(=343-252=91\)

22 tháng 12 2020

ai đó trả lời hộ tớ với

6 tháng 2 2018

Ta có: \(M=\frac{2010a}{ab+2010a+2010}+\frac{b}{bc+b+2010}+\frac{c}{ac+c+1}\)

Thế: abc = 2010 ta được:

\(M=\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(\Leftrightarrow\frac{a^2bc}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)

\(\Leftrightarrow\frac{a^2bc}{ab\left(1+ac+c\right)}+\frac{ab}{ab\left(c+1+ac\right)}+\frac{abc}{ab\left(ac+c+1\right)}\)

\(\Leftrightarrow\frac{a^2bc+ab+abc}{ab\left(1+ac+c\right)}=\frac{ab\left(ac+1+c\right)}{ab\left(1+ac+c\right)}=1\)

Vậy \(M=1\)

4 tháng 1 2018

Bài 2:

Ta có : \(2010=2011-1=x-1\)

Thay \(2010=x-1\) vào biểu thức A ,có :

\(x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)

\(=x^{2011}-x^{2011}+x^{2010}-x^{2010}+x^{2009}-...-x^2+x+1\)

\(=x+1\)

\(=2011+1=2012\)

Vậy giá trị biểu thức A là 2012

Bài 3:

\(a+b+c=0\)

\(\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\)

\(\Rightarrow a^2+2ab+b^2=c^2\)

\(\Rightarrow a^2+b^2-c^2=-2ab\left(1\right)\)

Tương tự :

\(a+b+c=0\)

\(\Rightarrow a+c=-b\)

\(\Rightarrow\left(a+c\right)^2=\left(-b\right)^2\)

\(\Rightarrow a^2+2ac+c^2=b^2\)

\(\Rightarrow a^2+c^2-b^2=-2ac\left(2\right)\)

\(a+b+c=0\)

\(\Rightarrow b+c=-a\)

\(\Rightarrow\left(b+c\right)^2=\left(-a\right)^2\)

\(\Rightarrow b^2+c^2-a^2=-2bc\left(3\right)\)

Từ (1)(2)(3)

\(\Rightarrow A=\dfrac{-ab}{2ab}+\dfrac{-bc}{2bc}+\dfrac{-ac}{2ac}\)

\(=\dfrac{-abc-abc-abc}{2abc}=\dfrac{-3abc}{2abc}=-\dfrac{3}{2}\)

Cảm ơn bạn nhahihi

13 tháng 12 2016

Ta có: \(a+b+c=0\)

\(=>\left(a+b+c\right)^2=0\)

\(=>a^2+b^2+c^2+2ab+2bc+2ac=0\)

\(=>a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(=>a^2+b^2+c^2=0\)

\(=>a^2+b^2+c^2=ab+bc+ac\)

\(=>2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)

\(=>\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)(nhân phân phối, đổi qua bên kia dấu bằng, tách thành hằng đẳng thức)

\(=>\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(=>\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}}\)

\(=>a=b=c=0\)

***\(A=\left(a-1\right)^{22}+b^{12}+\left(c-1\right)^{2014}\)

\(A=\left(-1\right)^{22}+1+\left(-1\right)^{2014}\)

\(A=1+1+1\)

\(A=3\)

13 tháng 12 2016

Ta có

a + b + c = 0

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow\)a2 + b2 + c2 = ab + bc + ca

Mà ta có a2 + b2 + c2 \(\ge\) ab + bc + ca

Dấu = xảy ra khi a = b = c = 0

\(\Rightarrow\)(a - 1)22 + b12 + (c - 1)2014 = 1 + 0 + 1 = 2