Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab=7^2-4\cdot12=1\)
b: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=7^3-3\cdot12\cdot7\)
\(=343-252=91\)
Ta có: \(M=\frac{2010a}{ab+2010a+2010}+\frac{b}{bc+b+2010}+\frac{c}{ac+c+1}\)
Thế: abc = 2010 ta được:
\(M=\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(\Leftrightarrow\frac{a^2bc}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)
\(\Leftrightarrow\frac{a^2bc}{ab\left(1+ac+c\right)}+\frac{ab}{ab\left(c+1+ac\right)}+\frac{abc}{ab\left(ac+c+1\right)}\)
\(\Leftrightarrow\frac{a^2bc+ab+abc}{ab\left(1+ac+c\right)}=\frac{ab\left(ac+1+c\right)}{ab\left(1+ac+c\right)}=1\)
Vậy \(M=1\)
Bài 2:
Ta có : \(2010=2011-1=x-1\)
Thay \(2010=x-1\) vào biểu thức A ,có :
\(x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)
\(=x^{2011}-x^{2011}+x^{2010}-x^{2010}+x^{2009}-...-x^2+x+1\)
\(=x+1\)
\(=2011+1=2012\)
Vậy giá trị biểu thức A là 2012
Bài 3:
\(a+b+c=0\)
\(\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\)
\(\Rightarrow a^2+2ab+b^2=c^2\)
\(\Rightarrow a^2+b^2-c^2=-2ab\left(1\right)\)
Tương tự :
\(a+b+c=0\)
\(\Rightarrow a+c=-b\)
\(\Rightarrow\left(a+c\right)^2=\left(-b\right)^2\)
\(\Rightarrow a^2+2ac+c^2=b^2\)
\(\Rightarrow a^2+c^2-b^2=-2ac\left(2\right)\)
\(a+b+c=0\)
\(\Rightarrow b+c=-a\)
\(\Rightarrow\left(b+c\right)^2=\left(-a\right)^2\)
\(\Rightarrow b^2+c^2-a^2=-2bc\left(3\right)\)
Từ (1)(2)(3)
\(\Rightarrow A=\dfrac{-ab}{2ab}+\dfrac{-bc}{2bc}+\dfrac{-ac}{2ac}\)
\(=\dfrac{-abc-abc-abc}{2abc}=\dfrac{-3abc}{2abc}=-\dfrac{3}{2}\)
Ta có: \(a+b+c=0\)
\(=>\left(a+b+c\right)^2=0\)
\(=>a^2+b^2+c^2+2ab+2bc+2ac=0\)
\(=>a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(=>a^2+b^2+c^2=0\)
\(=>a^2+b^2+c^2=ab+bc+ac\)
\(=>2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)
\(=>\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)(nhân phân phối, đổi qua bên kia dấu bằng, tách thành hằng đẳng thức)
\(=>\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
\(=>\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}}\)
\(=>a=b=c=0\)
***\(A=\left(a-1\right)^{22}+b^{12}+\left(c-1\right)^{2014}\)
\(A=\left(-1\right)^{22}+1+\left(-1\right)^{2014}\)
\(A=1+1+1\)
\(A=3\)
Ta có
a + b + c = 0
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow\)a2 + b2 + c2 = ab + bc + ca
Mà ta có a2 + b2 + c2 \(\ge\) ab + bc + ca
Dấu = xảy ra khi a = b = c = 0
\(\Rightarrow\)(a - 1)22 + b12 + (c - 1)2014 = 1 + 0 + 1 = 2