Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 3 + 32 + 33 + ...+330
3A = 3 + 32 + 33 + .. + 331
3A - A = 3 + 32 + ... + 331 - 1 - 3 - 32 - 330
2A = 331 - 1
A = \(\frac{3^{31}-1}{2}\)
Ta có : 3 31 - 1 = 328 . 33 - 1 = (34)7 . ( ... 7) - 1 = (..1)7.(...7) - 1 =(...1) .(..7 ) - 1 = (...7) - 1 = (...6)
=> Chứ số tận cùng của 331 - 1 là 6 => Chữ số tận cùng của A là 3 hoặc 8
Mặt khác , chữ số tận cùng của 1 số chính phương không thể là 3 hoặc 8 . Vậy A không phải số chính phương
Ta có :
A = 1 + 3 + 32 + 33 + ..... + 330
3A = 3 + 32 + 33 + ..... + 330 + 331
3A - A = (3 + 32 + 33 + ..... + 330 + 331) - (1 + 3 + 32 + 33 + ..... + 330)
2A = 331 - 1
Tới đây thì bí !
Ta có : 2x + 2x + 1 = 24
=> 2x(1 + 2) = 24
=> 2x.3 = 24
=> 2x = 8
=> 2x = 23
=> x = 3
Ta có : (x + 2)4 = (x + 2)6
=> (x + 2)4 - (x + 2)6 = 0
<=> (x + 2)4 (1 - (x + 2)2) = 0
<=> \(\orbr{\begin{cases}\left(x+2\right)^4=0\\\left(1-\left(x+2\right)^2\right)=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x+2=0\\\left(x+2\right)^2=1\end{cases}}\)
<=> \(\orbr{\begin{cases}x+2=0\\x+2=1\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-2\\x=-1\end{cases}}\)
ta có 3A=3*(1+3+3^2+3^3+...+3^30)
3A=3+3^2+3^3+3^4+....+3^31
lấy 3A-A=(3+3^2+3^3+3^4+....+3^31)-(1+3+3^2+3^3+3^4+...+3^30)=2A=(3^31-1) vậy A=(3^31-1):2
ta có 3^31-1=34*7+3-1=X17*33-1=Y1*27-1=C7-1=C6
ta có A=C6:2=I3
ta thấy các số có các cs tận cùng bằng 2;3;5;8 ko phải là số chính phương mà A=I3 có tận cùng là 3
vậy A không phải là số chính phương
Ta có: A = 1 + 31 + 32 + 33 + ... + 330
=> 3A = 3 . (1 + 31 + 32 + 33 + ... 330)
=> 3A = 3 + 32 + 33 + 34 + ... + 331
=> 3A - A = (3 + 32 + 33 + 34 + ... + 331) - (1 + 31 + 32 + 33 + ... + 330)
=> 2A = 331 - 1
=> A = \(\frac{3^{31}-1}{2}\)= \(\frac{\left(3^4\right)^7\times3^3}{2}\) = \(\frac{\left(...1\right)^7\times27-1}{2}\) = \(\frac{\left(...1\right)\times7-1}{2}\) = \(\frac{\left(...6\right)}{2}\) = \(...3\)
Vì số cuối của A là số 3 mà số chính phương không có số 3 nên A không phải là số chính phương.
\(A=1+3+3^2+3^3+....+3^{30}\)
\(3A=3+3^2+3^3+3^4+.....+3^{31}\)
\(3A-A=3^{31}-1\)
\(A=\frac{3^{31}-1}{2}\)
Ta có : \(3^{31}=3^{30}.3=9^{15}.3=\overline{.....9}.3=\overline{......7}\)
\(\Rightarrow3^{31}-1=\overline{......6}\Rightarrow\frac{3^{31}-1}{2}=\overline{......3}\)
Do đó A có chữ số tận cùng là 3
Mà số chính phương không thể có chữ số tận cùng là 3 => A không phải số chính phương (đpcm)
\(\left(1900-2x\right):35-32=16\)
\(\left(1900-2x\right):35=48\)
\(1900-2x=1680\)
\(2x=220\)
\(x=110\)
\(\left(1900-2x\right):35=16+32\)
\(\left(1900-2x\right):35=48\)
\(1900-2x=48.35\)
\(1900-2x=1680\)
\(2x=1900-1680\)
\(2x=220\)
\(x=220:2\)
\(x=110\)
Vậy x=110
A=(1+3+32+33)+...+3^24 +3^25+3^26+3^27)+...+(3^24 + 3^25 + 3^26 + 3^27) +(3^28+3^29+3^30) (bạn chia nhóm 4 số, chỉ nhóm cuối có 3 số)
=40 + 3^4.40 + 3^7.40 +... +3^24.40+3^28+3^29+3^30
=40.(1 + 3^4 + 3^7 +...+ 3^24) +3^28+3^29+3^30
40 chia hết cho 10 nên 40.(1 + 3^4 + 3^7 +...+ 3^24) tận cùng là 0
3^28 =(3^4)^7 =81^7 = (...1)
3^29 = 3^28.3 =(...1).3 = (...3)
3^30 =3^29.3 = (...3).3 = (...9)
Vậy A = (...1)+(...3)+(...9)=(...3)
mà các số chính phương chỉ có tận cùng là 0,1,4,5,6,9
suy ra A ko là số chính phương