Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :số chia hết cho cả 2 và 3 là số chia hết cho 6
các số chia hết cho 6 trong khoảng từ 50 đến 200 là :
A={54;60;66;...;192;198}
A có :(198-54):6+1=25(số hạng)
vậy có 25 số chia hết cho cả 2 và 3 trong khoảng từ 50 đến 200
a) (n+3) Chia hết cho (n-1)
Ta có : (n+3)=(n-1)+4
Vì (n-1) chia hết cho (n-1)
Nên (n+3) chia hết cho (n-1) thì 4 chia hết cho (n-1)
=> n-1 thuộc Ư(4)={1;2;4}
n-1 1 2 4
n 2 3 5
Vậy n thuộc {2;3;5 } thì (n+3) chia hết cho (n-1)
b)(4n+3) chia hết cho (2n+1)
Ta có : (4n+3)=2n.2+1+2
Vì (2n+1) chia hết cho (2n+1)
Nên (4n+3) chia hết cho (2n+1) thì 3 chia hết cho (2n+1)
=> 2n+1 thuộc Ư(3)={1;3}
2n+1 1 3
2n 0 2
n 0 1
Vậy n thuộc {0;1} thì (4n+3) chia hết cho (2n+1)
( x - 140) : 7 = 3^ 3 - 2^3. 3
( x - 140) : 7 = 27 - 24
( x - 140) : 7 = 3
( x - 140) = 3.7
( x - 140) = 21
x = 21 + 140
x = 161
(x-140):7=27-24
(x-140):7=3
x-140=21
x=161
A = 4 + 42 + 43 + 44 + ... + 460 (có 60 số; 60 chia hết cho 2)
A = (4 + 42) + (43 + 44) + ... + (459 + 460)
A = 4.(1 + 4) + 43.(1 + 4) + ... + 459.(1 + 4)
A = 4.5 + 43.5 + ... + 459.5
A = 5.(4 + 43 + ... + 459) chia hết cho 5
Ai giúp mk với mk đag cần gấp lắm, ai nhanh và đúng mk tick cho. Cảm mơn nhìu
(-1/9)^2000.2^2000-4/3
(-1/9)^2000.2^2000-4/3=\(\frac{2^{2000}}{9^{2000}}-\frac{4}{3}\)=\(\frac{4^{1000}}{3^{4000}}-\frac{4.3^{3999}}{3^{4000}}\)=\(\frac{4.\left(4^{999}-3^{3999}\right)}{3^{4000}}\)
mik k chắc lám vì đb k rõ ràng
Ta có: A = 1 + 31 + 32 + 33 + ... + 330
=> 3A = 3 . (1 + 31 + 32 + 33 + ... 330)
=> 3A = 3 + 32 + 33 + 34 + ... + 331
=> 3A - A = (3 + 32 + 33 + 34 + ... + 331) - (1 + 31 + 32 + 33 + ... + 330)
=> 2A = 331 - 1
=> A = \(\frac{3^{31}-1}{2}\)= \(\frac{\left(3^4\right)^7\times3^3}{2}\) = \(\frac{\left(...1\right)^7\times27-1}{2}\) = \(\frac{\left(...1\right)\times7-1}{2}\) = \(\frac{\left(...6\right)}{2}\) = \(...3\)
Vì số cuối của A là số 3 mà số chính phương không có số 3 nên A không phải là số chính phương.
\(A=1+3+3^2+3^3+....+3^{30}\)
\(3A=3+3^2+3^3+3^4+.....+3^{31}\)
\(3A-A=3^{31}-1\)
\(A=\frac{3^{31}-1}{2}\)
Ta có : \(3^{31}=3^{30}.3=9^{15}.3=\overline{.....9}.3=\overline{......7}\)
\(\Rightarrow3^{31}-1=\overline{......6}\Rightarrow\frac{3^{31}-1}{2}=\overline{......3}\)
Do đó A có chữ số tận cùng là 3
Mà số chính phương không thể có chữ số tận cùng là 3 => A không phải số chính phương (đpcm)