K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2019

Ta có: \(\frac{a}{2017}=\frac{b}{2018}=\frac{c}{2019}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{2017}=\frac{b}{2018}=\frac{c}{2019}=\frac{a-b}{2017-2018}=\frac{b-c}{2018-2019}=\frac{a-c}{2017-2019}.\)

\(\Rightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{a-c}{-2}\)

\(\Rightarrow\frac{a-b}{-1}.\frac{b-c}{-1}=\left(\frac{a-c}{-2}\right)^2\)

\(\Rightarrow\frac{\left(a-b\right).\left(b-c\right)}{1}=\frac{\left(a-c\right)^2}{\left(-2\right)^2}\)

\(\Rightarrow\frac{\left(a-b\right).\left(b-c\right)}{1}=\frac{\left(a-c\right)^2}{4}.\)

\(\Rightarrow4.\left(a-b\right).\left(b-c\right)=\left(a-c\right)^2.1\)

\(\Rightarrow4.\left(a-b\right).\left(b-c\right)=\left(a-c\right)^2\left(đpcm\right).\)

Chúc bạn học tốt!

24 tháng 12 2019

nhanh lên nhé sáng mai mình ktra rồi

7 tháng 3 2020

Đề có sai ko bạn sao lại c-d ?

7 tháng 3 2020

Sửa đề : Cần chứng minh \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)

Đặt :\(\frac{a}{2017}=\frac{b}{2018}=\frac{c}{2019}=k\)

\(\Rightarrow\hept{\begin{cases}a=2017k\\b=2018k\\c=2019k\end{cases}}\)

Khi đó :

\(4\left(a-b\right)\left(b-c\right)=4\left(2017k-2018k\right)\left(208k-2019k\right)\)

\(=4\cdot\left(-k\right)\cdot\left(-k\right)=4k^2\)

\(\left(c-a\right)^2=\left(2019k-2017k\right)^2=\left(2k\right)^2=4k^2\)

Do đó : \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\) (đpcm)

17 tháng 12 2019

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)

<=> \(\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{a+c}{b}+1\)

<=> \(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

<=> a + b + c = 0 hoặc a = b = c.

Th1: a + b + c = 0 

=> a + b = - c ; a + c = -b ; b + c = -a.

Thế vào P :

\(P=\left(1+\frac{a}{b}\right)\cdot\left(1+\frac{b}{c}\right)\cdot\left(1+\frac{c}{a}\right)\)

\(=\left(\frac{a+b}{b}\right)\cdot\left(\frac{b+c}{c}\right)\cdot\left(\frac{c+a}{a}\right)\)

\(=-\frac{c}{b}.\frac{\left(-a\right)}{c}.\frac{\left(-b\right)}{a}=-1\)

TH2: a = b = c. THế vào P 

\(P=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)

Vậy: P = -1 nếu a + b + c = 0 

hoặc P = 8 nếu a = b = c.

17 tháng 12 2019

\(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\)

Ta có: \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)\(\Rightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{a+c}{b}+1=\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

TH1: Nếu \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(\Rightarrow P=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{\left(-a\right).\left(-b\right).\left(-c\right)}{abc}=-1\)

TH2: Nếu \(a+b+c\ne0\)\(\Rightarrow a=b=c\)

\(\Rightarrow\hept{\begin{cases}a+b=2b\\b+c=2c\\c+a=2a\end{cases}}\)\(\Rightarrow P=\frac{2b}{b}.\frac{2c}{c}.\frac{2a}{a}=2.2.2=8\)

Vậy \(P=-1\)hoặc \(P=8\)

22 tháng 1 2016

không làm thì thôi đi rối mắt kệ các bạn chứ ai hỏi đâu mà phô ra

22 tháng 1 2016

Thùy Giang : bn nói đúng , bọn này ngu mà cứ thích cmt linh tinh

Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=2018k\\b=2019k\\c=2020k\end{matrix}\right.\)

\(\Rightarrow\left(a-c\right)^3=\left(2018k-2020k\right)^3=\left(-2k\right)^3=-8k^3\) (1)

\(8\left(a-b\right)^2.\left(b-c\right)=8\left(2018k-2019k\right)^2.\left(2019k-2020k\right)=8k^2\left(-k\right)=8\left(-k\right)^3=-8k^3\left(2\right)\)

Từ (1) và (2) ⇒ \(\left(a-c\right)^3=8\left(a-b\right)^2.\left(b-c\right)\left(đpcm\right)\)

30 tháng 1 2020

mn giúp mk vs

chiều mk nộp rùikhocroikhocroikhocroikhocroi