K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

Đặt:

\(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}=k\Leftrightarrow\left\{{}\begin{matrix}a=2015k\\b=2016k\\c=2017k\end{matrix}\right.\)

Nên \(4\left(a-b\right)\left(b-c\right)=4\left(2015k-2016k\right)\left(2016k-2017k\right)=4.\left(-k\right).\left(-k\right)=4k^2\)\(\left(c-a\right)^2=\left(2017k-2015k\right)^2=4k^2\)

Ta c dpcm

4 tháng 11 2017

Đặt \(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}\)= k

\(\Rightarrow\) a = 2015 . k

b = 2016 . k

c = 2017 . k

\(\Rightarrow\) 4( a - b ) . ( b - c) = 4( 2015.k - 2016.k) .( 2016.k - 2017.k )

= 4( -k) (-k) = 4k2 (1)

( c - a)2 =( 2017.k -2015.k)2= (2k)2= 4k2(2)

Từ (1) và ( 2) \(\Rightarrow\)4( a - b).( b - c ) = (c - a )2

24 tháng 12 2020

Là sao?

24 tháng 12 2020

đề bị bị sai rồi bạn ơi??? !!!

30 tháng 3 2018

Gọi \(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k\Rightarrow a=2014k;b=2015k;c=2016k\left(1\right)\)

Thay (1) vào M ta có :

M=4(2014k-2015k)(2015k-2016k)-(2016k-2014k)2

=>M=4.-k.-k-4k2

=>M=4k2-4k2=0

Vậy M = 0

7 tháng 3 2020

Đề có sai ko bạn sao lại c-d ?

7 tháng 3 2020

Sửa đề : Cần chứng minh \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)

Đặt :\(\frac{a}{2017}=\frac{b}{2018}=\frac{c}{2019}=k\)

\(\Rightarrow\hept{\begin{cases}a=2017k\\b=2018k\\c=2019k\end{cases}}\)

Khi đó :

\(4\left(a-b\right)\left(b-c\right)=4\left(2017k-2018k\right)\left(208k-2019k\right)\)

\(=4\cdot\left(-k\right)\cdot\left(-k\right)=4k^2\)

\(\left(c-a\right)^2=\left(2019k-2017k\right)^2=\left(2k\right)^2=4k^2\)

Do đó : \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\) (đpcm)

30 tháng 10 2019

Đề bài có bị sai không bạn? Đặng Quốc Huy

30 tháng 10 2019

Ko đề đúng đấy màVũ Minh Tuấn