K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2020
Bạn chơi ff ko 😀😀😀
20 tháng 12 2020

A= (x2+4y2+9/4+4xy+3x+3y) + (y2+5x+95/4)

  = (x+2y+3/2)2 + (y+5/2)2 + 15

=> A min = 15

Dấu "=" xảy ra khi y=-5/2 ; x=7/2

6 tháng 12 2020

A = x2 + 5y2 + 4xy + 3x + 8y + 26

= ( x2 + 4xy + 4y2 + 3x + 6y + 9/4 ) + ( y2 + 2y + 1 ) + 91/4

= [ ( x + 2y )2 + 2( x + 2y ).3/2 + (3/2)2 ] + ( y + 1 )2 + 91/4

= ( x + 2y + 3/2 )2 + ( y + 1 )2 + 91/4\(\ge\)91/4

Dấu "=" xảy ra <=>\(\orbr{\begin{cases}\left(x+2y+\frac{3}{2}\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)<=>\(\orbr{\begin{cases}x+2y=-\frac{3}{2}\\y=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}\)

Vậy minA = 91/4 <=>\(\orbr{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}\)

6 tháng 12 2020

A = x2 + 5y2 + 4xy + 3x + 8y + 26

= (x2 + 4xy + 4y2) + (3x + 6y) + 9/4 + (y2 + 2y + 1) + \(\frac{91}{4}\)

\(\left(x+2y\right)^2+3\left(x+2y\right)+\frac{9}{4}+\left(y+1\right)^2+\frac{91}{4}\)

\(\left(x+2y+\frac{3}{2}\right)^2+\left(y+1\right)^2+\frac{91}{4}\ge\frac{91}{4}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+2y+\frac{3}{2}=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+2y=-\frac{3}{2}\\y=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}\)

Vậy Min A = 91/4 <=> x = 1/2 ; y = -1

8 tháng 8 2017

\(M=x^2+5y^2-4xy+2x-8y+2021\)

\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-4y+4\right)+2016\)

\(=\left(x-2y+1\right)^2+\left(y-2\right)^2+2016\ge2016\)

Vậy GTNN của M là 2016 đạt đươc tại \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)

2 tháng 12 2019

Có P = x2 + 5y2 + 4xy + 6x + 16y + 32

         = [(x2 + 4xy + 4y2) + 6x + 12y + 9] + (y2 + 4y + 22) + 19

         = [(x + 2y)2 + 2(x + 2y).3 + 32 ] + (y + 2)2 + 19

         = (x + 2y + 3)2 + (y + 2)2 + 19

Thấy (x + 2y + 3)2 ≥ 0 với mọi x; y

         (y + 2)2 ≥ 0 với mọi y

=> (x + 2y + 3)2 + (y + 2)2 ≥ 0 với mọi x; y

=> (x + 2y + 3)2 + (y + 2)2 + 19 ≥ 19 với mọi x; y

=> P ≥ 19 với mọi x; y

Dấu "=" xảy ra khi x + 2y + 3 = 0 và y + 2 = 0

Bn tự giải tiếp nha, mk ko biết có nhầm chỗ nào ko nhưng cách lm như vậy đó

6 tháng 11 2021

\(A=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)

\(minA=4\Leftrightarrow x=2\)

\(B=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2\)

\(minB=2\Leftrightarrow x=\dfrac{3}{2}\)

\(C=3\left(x^2+2x+1\right)-8=3\left(x+1\right)^2-8\ge-8\)

\(minC=-8\Leftrightarrow x=-1\)

\(D=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4\le-4\)

\(maxD=-4\Leftrightarrow x=1\)

\(E=-\left(4x^2-6x+\dfrac{9}{4}\right)-\dfrac{11}{4}=-\left(2x-\dfrac{3}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\)

\(maxA=-\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{4}\)

\(F=-2\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{55}{8}=-2\left(x-\dfrac{1}{4}\right)^2-\dfrac{55}{8}\le-\dfrac{55}{8}\)

\(maxF=-\dfrac{55}{8}\Leftrightarrow x=\dfrac{1}{4}\)

\(G=\left(x^2-4xy+4y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-2y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(maxG=\dfrac{3}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-\dfrac{1}{2}\end{matrix}\right.\)

\(H=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)+16=-\left(x-1\right)^2-\left(y+2\right)^2+16\le16\)

\(maxH=16\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

8 tháng 11 2021

hk có câu H na bạn?
bạn thiếu câu cuối kìa

6 tháng 4 2020

Bạn có ghi nhầm đề không vậy? 

10 tháng 7 2017

a) x2 + 2y2 - 2xy + 8y + 7
= x2 - 2xy + y2 + y2 + 8y + 16 - 9
= (x - y)2 + (y + 4)2 - 9
GTNN của biểu thức trên là -9

b) 5x2 + y2 + 2xy - 12x - 18
= x2 + 2xy + y2 + 4x2 - 12x + 9 - 27
= (x + y)2 + (2x - 3)2 - 27
GTNN của biểu thức trên là -27

c) 3x2 + 4y2 + 4xy + 2x - 4y + 26
= 2x2 + 4xy + 2y2 + x2 + 2x + 1 + 2y2 - 4y + 2 + 23
= (\(\sqrt{2}\)x + \(\sqrt{2}\)y)2 + (x + 1)2 + 23
GTNN của biểu thức trên là 23

Câu d mình ko biết làm

10 tháng 7 2017

d) D= 5x^2+9y^2-12xy+24x-48y+82

\(=4x^2+9y^2+64-12xy+32x-48y+x^2-8x+16+2\)

\(=\left[\left(2x\right)^2+\left(3y\right)^2+8^2-2.2x.3y+2.2x.8-2.3y.8\right]+\left(x^2-2.x.4+4^2\right)+2\)

\(=\left(2x-3y+8\right)^2+\left(x-4\right)^2+2\ge2\)

Vậy GTNN của D là 2 tại \(\hept{\begin{cases}\left(2x-3y+8\right)^2=0\\\left(x-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-3y+8=0\\x-4=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}}\)