K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

 Giá trị lớn nhất của A sẽ đạt khi mẫu của phần số A nhỏ nhất . 

I x - 2017 I có giá trị nhỏ nhất khi x = 2017 

Khi đó I x - 2017 I + 2 = 2

A = 4032 / 2 = 2016

Vậy để biểu thức A đạt giá trị lớn nhất thì x = 2017 

GTLN A = 2016

1 tháng 11 2017

giải giúp tôi

|2x+1|+|x+8|=4x

29 tháng 10 2017

Ta có : |x-2013| ≥ 0 với mọi x

=> |x-2013|+2≥ 2

=>\(\frac{2016}{\left|x-2013\right|+2}\)≤ \(\frac{2016}{2}\)

=> Max A =1008

<=> x-2013=0 

<=> x=2013

6 tháng 8 2018

=1008

nha anh của cậu rất đẹp tớ rất thích susuca

11 tháng 7 2016

Để \(\frac{2006}{\left|x-2013\right|+7}\) lớn nhất thì \(\left|x-2013\right|+7\) bé nhất

Đặt \(C=\left|x-2013\right|+7\)

Ta có:\(\left|x-2013\right|\ge0\)

\(\Rightarrow\left|x-2013\right|+7\ge7\)

\(\Rightarrow MinC=7\)  khi x=2013

31 tháng 10 2019

Câu hỏi của Nguyễn Quỳnh Chi - Toán lớp 7 - Học toán với OnlineMath

8 tháng 12 2019

A = 2026 / | x - 2013 | + 2

Để A đạt giá trị lớn nhất

\(\Leftrightarrow\)| x - 2013 | + 2 đạt giá trị nhỏ nhất

Ta có :

C = | x - 2013 | + 2

C = | x - 2013 | + 2 \(\ge\)2

Dấu " = " xảy ra \(\Leftrightarrow\)x - 2013 = 0

                            \(\Rightarrow\) x             = 2013

Do đó : Min C = 2\(\Leftrightarrow\)x = 2013

Vậy : Max A = 2026 / 2 = 1013 \(\Leftrightarrow\)x = 2013

14 tháng 4 2020

còn gì dống con chó nhất

6 tháng 11 2016

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

6 tháng 11 2016

trị tuyệt đối phải bằng dương chứ sao bằng âm được

Vì |x−2013|≥0⇒|x−2013|+2≥2

⇒A=\(\frac{2026}{\left|x-2013\right|+2}\) ≤1013

=>A đạt giá trị lớn nhất là 1013 khi  |x−2013|=0

                                                     ⇔x−2013=0

                                                     ⇔x=2013

Vậy A đạt giá trị lớn nhất là 1013 khi x=2013

31 tháng 10 2019

Câu hỏi của Nguyễn Quỳnh Chi - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé!

2 tháng 11 2016

Vì \(\left|x-2013\right|\ge0\Rightarrow\left|x-2013\right|+2\ge2\Rightarrow A=\frac{2026}{\left|x-2013\right|+2}\le1013\)

=>A đạt giá trị lớn nhất là 1013 khi  \(\left|x-2013\right|=0\Leftrightarrow x-2013=0\Leftrightarrow x=2013\)

Vậy A đạt giá trị lớn nhất là 1013 khi x=2013

1 tháng 11 2018

1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)

\(2^x.2^2.3^x.3.5^x=10800\)

\(\Rightarrow\left(2.3.5\right)^x.12=10800\)

\(\Rightarrow30^x=\frac{10800}{12}=900\)

\(\Rightarrow30^x=30^2\)

\(\Rightarrow x=2\)

b,\(3^{x+2}-3^x=24\)

\(\Rightarrow3^x\left(3^2-1\right)=24\)

\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)

2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu bằng xảy ra khi \(ab\ge0\)

Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)

 \(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)

Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)

Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)

d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)

Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)

Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)

\(\Rightarrow B\le1\)

Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)

\(\Rightarrow x\le2017\)

Vậy \(Max_B=1\) khi \(x\le2017\)

1 tháng 11 2018

để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)

suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)

Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3

\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))

Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!