Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1.
Tìm a,b để \(x^3+ax+b\)chia \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
- Thương của phép chia đa thức bậc 3 \(x^3+ax+b\)cho \(x+1\)là 1 đa thức bậc 2 có hệ số bậc 2 bằng 1, tổng quát ở dạng: \(x^2+mx+n\).
- Số dư của phép chia này là 7 nên ta có:
\(x^3+ax+b=\left(x+1\right)\left(x^2+mx+n\right)+7\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(m+1\right)x^2+\left(m+n\right)x+n+7\mid\forall x\in R\)
Để 2 đa thức này bằng nhau với mọi x thuộc R thì hệ số các bậc phải bằng nhau. Đồng nhất chúng ta có:
\(\hept{\begin{cases}m+1=0\\m+n=a\\n+7=b\end{cases}\Rightarrow\hept{\begin{cases}m=-1\\n=a+1\\b=a+1+7\end{cases}\Rightarrow}b=a+8\mid\left(1\right)}\)
- Tương tự với phép chia \(x^3+ax+b\)cho \(x-3\)dư -5.
\(x^3+ax+b=\left(x-3\right)\left(x^2+px+q\right)-5\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(p-3\right)x^2+\left(q-3p\right)x-\left(3q+5\right)\mid\forall x\in R\)
\(\Rightarrow\hept{\begin{cases}p-3=0\\q-3p=a\\-\left(3q+5\right)=b\end{cases}\Rightarrow\hept{\begin{cases}p=3\\q=a+9\\b=-\left(3\left(a+9\right)+5\right)\end{cases}\Rightarrow}b=-3a-32\mid\left(2\right)}\)
- Từ (1) và (2) ta có:
\(\hept{\begin{cases}b=a+8\\b=-3a-32\end{cases}\Rightarrow a+8=-3a-32\Rightarrow\hept{\begin{cases}a=-10\\b=-2\end{cases}}}\)
- Vậy với \(a=-10;b=-2\)thì đa thức đã cho trở thành \(x^3-10x-2\)chia cho \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
- Viết kết quả các phép chia này ta được:
\(\hept{\begin{cases}x^3-10x-2=\left(x+1\right)\left(x^2-x-9\right)+7\\x^3-10x-2=\left(x-3\right)\left(x^2+3x-1\right)-5\end{cases}\mid\forall x\in R}\)
với n = 2k thì :
( 5.2k + 7 ) . ( 4.2k + 6 )
= ( 10k + 7 ) . ( 8k + 6 )
= ( 10k + 7 ) . 2 . ( 4k + 3 ) \(⋮\)2
với n = 2k + 1 thì :
[ 5 . ( 2k + 1 ) + 7 ] . [ 4 . ( 2k + 1 ) + 6 ]
= ( 10k + 5 + 7 ) . ( 8k + 4 + 6 )
= ( 10k + 12 ) . ( 8k + 10 )
= 2 . ( 5k + 6 ) . 2 . ( 4k + 5 ) \(⋮\)2
Thanks, nhưng có thể làm kiểu phân phối của lớp 6 đc ko?
Lời giải:
Nếu $n=3k$ với $k\in\mathbb{Z}$ thì:
$2^n-1=2^{3k}-1=8^k-1\equiv 1^k-1\equiv 0\pmod 7$
Nếu $n=3k+1$ với $k\in\mathbb{Z}$ thì:
$2^n-1=2^{3k+1}-1=2.8^k-1\equiv 2.1^k-1\equiv 1\pmod 7$
Nếu $n=3k+2$ với $k\in\mathbb{Z}$ thì:
$2^n-1=2^{3k+2}-1=4.8^k-1\equiv 4.1^k-1\equiv 3\pmod 7$
Vậy với $n=3k$ với $k\in\mathbb{Z}$ thì $2^n-1\vdots 7$
a) Ta có: \(\frac{8n+5}{4n+1}=\frac{\left(8n+2\right)+3}{4n+1}=2+\frac{3}{4n+1}\)
Để BT nguyên
=> \(\frac{3}{4n+1}\inℤ\)<=> \(4n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Mà \(4n+1\equiv1\left(mod4\right)\)
=> \(4n+1\in\left\{1;-3\right\}\Rightarrow n\in\left\{0;-1\right\}\)
b) Ta có: \(7^6+7^5-7^4\)
\(=7^4\left(7^2+7-1\right)\)
\(=7^4\cdot55⋮55\)
=> đpcm