Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Gọi q là công bội của cấp số. Khi đó ta có:
Suy ra: ⇔ 39q4 – 82q3 -82q2 -82q + 39 = 0
⇔ (3q – 1)(q – 3)(13q2 + 16q + 13) = 0 ⇔ q = 1/3, q = 3
Ta có
Lấy (2) chia (1) theo vế với vế ta được q = 2 thế vào (1):
(1) ⇔ 2u1(4 – 1) = 72 ⇔ u1 = 12
Vậy u1 = 12 và q = 2
Chọn B.
Với q = 3 ta có: nên có một số hạng của dãy
Với q = 1/3 ta có: nên có một số hạng của dãy.
Chọn C
Gọi q là công bội của cấp số. Khi đó ta có
u 1 + u 2 + u 3 + u 4 + u 5 = 11 u 1 + u 5 = 82 11
⇔ u 2 + u 3 + u 4 = 39 11 u 1 + u 5 = 82 11 ⇔ u 1 q + q 2 + q 3 = 39 11 u 1 1 + q 4 = 82 11
Suy ra:
q 4 + 1 q 3 + q 2 + q = 82 39 ⇔ 39 q 4 − 82 q 3 − 82 q 2 − 82 q + 39 = 0
⇔ ( 3 q − 1 ) ( q − 3 ) ( 13 q 2 + 16 q + 13 ) = 0 ⇔ q = 1 3 , q = 3
q = 1 3 ⇒ u 1 = 81 11 ⇒ u n = 81 11 . 1 3 n − 1
q = 3 ⇒ u 1 = 1 11 ⇒ u n = 3 n − 1 11
Chọn C.
Công thức tổng quát của CSN có số hạng đầu là u1 và công bội q
u n = u 1 . q n - 1
Cách giải:
Gọi số hạng đầu và công bội của CSN lần lượt là u 1 , q
Theo đề bài ta có hệ phương trình:
Lây (2) chia cho (1) ta được:
Ta có:
Lấy (2) chia (1) theo vế với vế ta được q = 2 thế vào (1):
(1) ⇔ 2u1(1 + 8 - 4) = 10 ⇔ u1 = 1
Vậy u1 = 1 và q = 2
Theo t/c CSN \(u_1u_3=u_2^2\Rightarrow u_2^3=64\Rightarrow u_2=4\)
\(\Rightarrow\left\{{}\begin{matrix}u_1+u_3=10\\u_1u_3=16\end{matrix}\right.\)
Theo Viet đảo, \(u_1\) và \(u_3\) là nghiệm: \(t^2-10t+16=0\Rightarrow\left[{}\begin{matrix}t=2\\t=8\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}u_1=2\Rightarrow q=2\\u_1=8\Rightarrow q=\frac{1}{2}\end{matrix}\right.\)