Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\left\{{}\begin{matrix}u_1+\left(u_1+4d\right)-\left(u_1+2d\right)=10\\\left(u_1+d\right)+\left(u_1+4d\right)=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u_1+2d=10\\2u_1+5d=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_1=36\\d=-13\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}u_1+d+u_1+3d=5\\u_1^2+\left(u_1+4d\right)^2=25\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4d=5-2u_1\\u_1^2+\left(u_1+4d\right)^2=25\end{matrix}\right.\)
\(\Rightarrow u_1^2+\left(u_1+5-2u_1\right)^2=25\)
\(\Rightarrow u_1^2+u_1^2-10u_1+25=25\)
\(\Rightarrow\left[{}\begin{matrix}u_1=0\Rightarrow d=\dfrac{5}{4}\\u_1=5\Rightarrow d=-\dfrac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1+u_1q^2+u_1q^4=-21\\u_1q+u_1q^3=10\end{matrix}\right.\)
Chia vế cho vế:
\(\frac{1+q^2+q^4}{q+q^3}=-\frac{21}{10}\)
\(\Leftrightarrow10q^4+21q^3+10q^2+21q+10=0\)
Nhận thấy \(q=0\) không phải là nghiệm, chia 2 vế cho \(q^2\):
\(10\left(q^2+\frac{1}{q^2}\right)+21\left(q+\frac{1}{q}\right)+10=0\)
Đặt \(q+\frac{1}{q}=x\) với \(\left|x\right|\ge2\Rightarrow q^2+\frac{1}{q^2}=x^2-2\)
\(\Rightarrow10\left(x^2-2\right)+21x+10=0\)
\(\Leftrightarrow10x^2+21x-10=0\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{2}{5}\left(l\right)\\x=-\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow q+\frac{1}{q}=-\frac{5}{2}\Leftrightarrow2q^2+5q+2=0\Rightarrow\left[{}\begin{matrix}q=-2\\q=-\frac{1}{2}\end{matrix}\right.\)
- Với \(q=-2\Rightarrow u_1=-1\)
- Với \(q=-\frac{1}{2}\Rightarrow u_1=-16\)