chu vi tam giác ABC=11/13 chu vi tam giác DEF và tam giác ABC đồng dạng tam giác DEF. Biết BC<EF là 1cm. Tính BC,EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{3}-x+1=\frac{x}{4}-\frac{x+1}{3}\)
\(\Leftrightarrow12.\left(\frac{x}{3}-x+1\right)=12.\left(\frac{x}{4}-\frac{x+1}{3}\right)\)
\(\Leftrightarrow4x-12x+12=3x-4.\left(x+1\right)\)
\(\Leftrightarrow4x-12x+12=3x-4x-4\)
\(\Leftrightarrow4x-12x-3x+4x=\left(-12\right)-4\)
\(\Leftrightarrow\left(-7\right)x=-16\)
\(\Leftrightarrow x=\frac{16}{7}\)
Vậy \(x=\frac{16}{7}\)
\(4x-12x+12=3x-4\left(x+1\right)\Leftrightarrow-8x+12=-x-4\)
\(\Leftrightarrow-7x=-16\Leftrightarrow x=\dfrac{16}{7}\)
sửa đề
\(\left(x+4\right)\left(x^2+\dfrac{1}{2x-1,5}\right)-\left(3-x\right)\left(x^2+\dfrac{1}{2x-1,5}\right)=0\)
đk : x khác 3/4
\(\Leftrightarrow\left(x+4+x-3\right)\left(x^2+\dfrac{1}{2x-1,5}\right)=0\)
\(\Leftrightarrow\left(x^2+1>0\right)\left(\dfrac{2x^3-1,5x+1}{2x-1,5}\right)=0\Rightarrow2x^3-1,5x+1=0\Leftrightarrow x=-1,0979...\)
a,ĐKXĐ:\(\left\{{}\begin{matrix}x\ne2\\x\ne5\end{matrix}\right.\)
\(\dfrac{3x}{x-2}+\dfrac{3x}{\left(x-2\right)\left(x-5\right)}=\dfrac{x}{x-5}\\ \Leftrightarrow\dfrac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}+\dfrac{3x}{\left(x-2\right)\left(x-5\right)}-\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}=0\\ \Leftrightarrow x\left(\dfrac{3x-15}{\left(x-2\right)\left(x-5\right)}+\dfrac{3}{\left(x-2\right)\left(x-5\right)}-\dfrac{x-2}{\left(x-2\right)\left(x-5\right)}\right)=0\\ \Leftrightarrow x.\dfrac{3x-15+3-x+2}{\left(x-2\right)\left(x-5\right)}=0\\ \Leftrightarrow\dfrac{x\left(2x-10\right)}{\left(x-2\right)\left(x-5\right)}=0\\ \Leftrightarrow\dfrac{2x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}=0\\ \Leftrightarrow\dfrac{2x}{x-2}=0\\ \Rightarrow2x=0\\ \Leftrightarrow x=0\left(tm\right)\)
\(b,ĐKXĐ:x\ge\dfrac{5}{4}\\ \left|3x-2\right|=4x-5\\ \Leftrightarrow\left[{}\begin{matrix}3x-2=4x-5\\3x-2=5-4x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\7x-7=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\)