So sánh \(\dfrac{3}{4}+\dfrac{3}{9}+\dfrac{3}{16}+...+\dfrac{3}{\left(3n\right)^2}\) với 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S< \dfrac{1}{10x11}+\dfrac{1}{11x12}+...+\dfrac{1}{\left(n-1\right)n}\)
\(S< \dfrac{1}{10}-\dfrac{1}{n}< \dfrac{1}{10}\)
\(5⋮\left(2x-1\right)\)
\(\Rightarrow\left(2x-1\right)\in U\left(5\right)\in\left(\pm1;\pm5\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1\text{=}-1\\2x-1\text{=}1\\2x-1\text{=}-5\\2x-1\text{ }\text{=}5\end{matrix}\right.\Leftrightarrow x\text{=}\left\{{}\begin{matrix}0\\1\\-2\\3\end{matrix}\right.\)
\(5⋮\left(2x-1\right)\)
=> 2x-1 thuộc ước của 5
mà \(Ư\left(5\right)\in\left\{-1;1;-5;5\right\}\)
ta có bảng sau
2x-1 | -1 | 1 | -5 | 5 |
x | 0 | 1 | -2 | 3 |
vậy \(x\in\left\{0;1;-2;3\right\}\)
\(x^2.x=\left(-9\right).3\)
\(\Rightarrow x^3=-27\)
\(\Rightarrow x^3=\left(-3\right)^3\)
\(\Rightarrow x=-3\)
Vậy x = -3.
Đặt A = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}...+\dfrac{1}{2^x}\) suy ra 2A= \(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{x-1}}\)
2A-A=2= \(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{x-1}}\)-\(1-\dfrac{1}{2}-\dfrac{1}{2^2}...-\dfrac{1}{2^x}\)
A= \(2-\dfrac{1}{2^x}\)
Khi đó: \(\dfrac{1}{1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^x}}=\dfrac{1}{2-\dfrac{1}{2^x}}=\dfrac{2^x}{127}\) suy ra: 127=\(2^{x+1}-1\)=>127+1=128=\(2^7\)=\(2^{x+1}\)=>x+1=7=>x=6
Vậy x=6
\(S=\dfrac{1}{5^2}+\dfrac{1}{7^2}+\dfrac{1}{9^2}+...+\dfrac{1}{103^2}\)
\(\Rightarrow2S=\dfrac{2}{5^2}+\dfrac{2}{7^2}+\dfrac{2}{9^2}+...+\dfrac{2}{103^2}\)
Có:
\(\dfrac{2}{5^2}=\dfrac{2}{5.5}< \dfrac{2}{4.6}=\dfrac{1}{4}-\dfrac{1}{6}\)
\(\dfrac{2}{7^2}=\dfrac{2}{7.7}< \dfrac{2}{6.8}=\dfrac{1}{6}-\dfrac{1}{8}\)
\(\dfrac{2}{9^2}=\dfrac{2}{9.9}< \dfrac{2}{8.10}=\dfrac{1}{8}-\dfrac{1}{10}\)
...
\(\dfrac{2}{103^2}=\dfrac{2}{103.103}< \dfrac{1}{102.104}=\dfrac{1}{102}-\dfrac{1}{104}\)
\(\Rightarrow2S< \dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{10}+...+\dfrac{1}{102}-\dfrac{1}{104}\)
\(\Rightarrow2S< \dfrac{25}{104}\)
\(\Rightarrow S< \dfrac{25}{208}< \dfrac{5}{32}\)
\(\Rightarrow S< \dfrac{5}{32}\).
Ta có:
\(\dfrac{1}{5^2}< \dfrac{1}{4.6}\)
\(\dfrac{1}{7^2}< \dfrac{1}{6.8}\)
\(\dfrac{1}{9^2}< \dfrac{1}{8.10}\)
\(...\)
\(\dfrac{1}{103^2}< \dfrac{1}{102.104}\)
\(\Rightarrow S\)\(< \dfrac{1}{4.6}+\dfrac{1}{6.8}+\dfrac{1}{8.10}+...+\dfrac{1}{102.104}\)\(\left(1\right)\)
Đặt \(A=\dfrac{1}{4.6}+\dfrac{1}{6.8}+\dfrac{1}{8.10}+...+\dfrac{1}{102.104}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{4.6}+\dfrac{2}{6.8}+\dfrac{2}{8.10}+...+\dfrac{2}{102.104}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{10}+...+\dfrac{1}{102}-\dfrac{1}{104}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{4}-\dfrac{1}{104}\right)\)
\(=\dfrac{1}{2}.\dfrac{25}{104}\)
\(=\dfrac{25}{208}< \dfrac{25}{160}\)\(\left(2\right)\)
Mà \(\dfrac{25}{160}=\dfrac{5}{32}\)\(\left(3\right)\)
Từ \(\left(1\right),\left(2\right)\) và \(\left(3\right)\)
\(\Rightarrow S< \dfrac{5}{32}\)
A = \(\dfrac{3}{4}\) + \(\dfrac{3}{9}\) + \(\dfrac{3}{16}\) + \(\dfrac{3}{25}\) +..............+ \(\dfrac{3}{(3n)^2}\)
A = ( \(\dfrac{3}{4}\) + \(\dfrac{3}{9}\) + \(\dfrac{3}{16}\)+ \(\dfrac{3}{25}\)) +.....+ \(\dfrac{3}{(3n)^2}\)
A = 3. ( \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\))+............+ \(\dfrac{3}{(3n)^2}\)
A = 3.( \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + \(\dfrac{1}{4.4}\) + \(\dfrac{1}{5.5}\)) +............+ \(\dfrac{3}{(3n)^2}\)
Vì \(\dfrac{1}{2}\) > \(\dfrac{1}{3}\) > \(\dfrac{1}{4}\) > \(\dfrac{1}{5}\)Ta có : \(\dfrac{1}{2.2}>\dfrac{1}{2.3}>\dfrac{1}{3.3}>\dfrac{1}{3.4}>\dfrac{1}{4.4}>\dfrac{1}{4.5}>\dfrac{1}{5.5}>\dfrac{1}{5.6}\)
A > 3. ( \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\)) + ............+ \(\dfrac{1}{(3n)^2}\)
A > 3. ( \(\dfrac{1}{2}\) - \(\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)) +.....+ \(\dfrac{1}{(3n)^2}\)
A > 3.( \(\dfrac{1}{2}\) - \(\dfrac{1}{6}\)) +..............+ \(\dfrac{1}{(3n)^2}\)
A > 3. \(\dfrac{1}{3}\) +...............+ \(\dfrac{1}{(3n)^2}\)
A > 1 +..........+ \(\dfrac{1}{9n^2}\) > 1
A > 1