cho tam giác abc nội tiếp đường tròn tâm I ngoại tiếp duong tròn tâm J biết đỉnh A(2;3) . Tìm tọa độ hai đỉnh B và C
help me :))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tồn tại hàm \(f\left(n\right)\)thỏa mãn đề bài.
Ta sẽ chứng minh \(f\left(n\right)=n+1\)với mọi \(n\inℕ\).(1)
Thật vậy, (1) đúng với \(n=0\). \(f\left(0\right)=1,f\left(f\left(0\right)\right)=f\left(1\right)=2=0+2\)
Giả sử (1) đúng đến \(n=k\ge1\)tức là \(f\left(k\right)=k+1\)
Ta sẽ chứng minh (1) đúng với \(n=k+1\)tức là \(f\left(k+1\right)=k+2\).
Thật vậy, ta có: \(f\left(k+1\right)=f\left(f\left(k\right)\right)=k+2\).
Do đó (1) đúng với \(n=k+1\).
Theo giả thiết quy nạp (1) đúng với mọi \(n\inℕ\).
Vậy \(f\left(n\right)=n+1\).
ta có
\(P=sin8x-2sinxcos7x-2sinxcos5x=sin8x-\left(sin8x-sin6x\right)-\left(sin6x-sin4x\right)\)
\(=sin4x\)
\(cos\left(x\right)-cos\left(2x\right)=sin\left(3x\right)\)
\(\Leftrightarrow-2sin\frac{3x}{2}sin\frac{-x}{2}=2sin\frac{3x}{2}cos\frac{3x}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}sin\frac{3x}{2}=0\left(1\right)\\sin\frac{x}{2}=cos\frac{3x}{2}\left(2\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow\frac{3x}{2}=k\pi\left(k\inℤ\right)\)
\(\Leftrightarrow x=\frac{2k\pi}{3}\left(k\inℤ\right)\)
\(\left(2\right)\Leftrightarrow sin\frac{x}{2}=sin\left(\frac{\pi}{2}-\frac{3x}{2}\right)\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{x}{2}=\frac{\pi}{2}-\frac{3x}{2}+k2\pi\\\frac{x}{2}=\pi-\left(\frac{\pi}{2}-\frac{3x}{2}\right)+k2\pi\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{4}+k\pi\\x=-\frac{\pi}{2}+k2\pi\end{cases}\left(k\inℤ\right)}\)
Gọi \(M\left(0,y\right)\in Oy\)
ta có M cách đều A,B hay \(MA=MB\Leftrightarrow1+y^2=2^2+\left(y-3\right)^2\)
\(\Leftrightarrow6y=12\Leftrightarrow y=2\)
Vậy tọa độ của M khi đó là (0,2)
a.\(\left(3-x\right)\left(x^2+5x+6\right)=\left(3-x\right)\left(x+2\right)\left(x+3\right)\)
ta có :
|
Vậy bất phương trình có nghiệm \(\text{(}-\infty,-3\text{]}\cup\left[-2,3\right]\)
b. \(\left(6+5x\right)\left(x^2-5x+6\right)=\left(6+5x\right)\left(x-2\right)\left(x-3\right)\)
|
Vậu BPT có nghiệm \(\left[-\frac{6}{5},2\right]\cup\text{[}3,+\infty\text{)}\)
\(a)\)
\(1-sin\left(x\right)\)
\(=sin^2\frac{x}{2}+cos^2\frac{x}{2}-2.sin\frac{x}{2}.cos\frac{x}{2}\)
\(=\left(sin\frac{x}{2}-cos\frac{x}{2}\right)^2\)
\(b)\)
\(1+sin\left(x\right)\)
\(=sin^2\frac{x}{2}+cos^2\frac{x}{2}+2.sin\frac{x}{2}.cos\frac{x}{2}\)
\(=\left(sin\frac{x}{2}+cos\frac{x}{2}\right)^2\)
\(d)\)
\(1+2cos\left(x\right)\)
\(=2\left(\frac{1}{2}+cosx\right)\)
\(=2\left(cos60^o+cosx\right)\)
\(=4\left(cos\frac{60^o+x}{2}cos\frac{60^o-x}{2}\right)\)
\(=4cos\left(30^o+\frac{x}{2}\right)cos\left(30^o-\frac{x}{2}\right)\)
ta có điều kiện \(\hept{\begin{cases}2x-1\ge0\\x-1\ge0\\3x+1\ne2x-1\end{cases}\Leftrightarrow x\ge1}\)
vậy BPT \(\Leftrightarrow\frac{3x\left(\sqrt{2x-1}-\sqrt{x-1}\right)}{2x-1-\left(x-1\right)}-\frac{\left(x+2\right)\left(\sqrt{3x+1}+\sqrt{2x-1}\right)}{3x+1-\left(2x-1\right)}>0\)
\(\Leftrightarrow3\left(\sqrt{2x-1}-\sqrt{x-1}\right)-\left(\sqrt{3x+1}+\sqrt{2x-1}\right)>0\)
\(\Leftrightarrow2\sqrt{2x-1}>\sqrt{3x+1}+3\sqrt{x-1}\Leftrightarrow8x-4>12x-8+6\sqrt{3x+1}.\sqrt{x-1}\)
\(\Leftrightarrow4-4x>6\sqrt{3x+1}.3\sqrt{x-1}\) vô lí do vế trái \(\le0\forall x\ge1\) còn vế phải lớn hơn bằng không
vậy bất phương trình vô nghiệm