cho a, b, c > 0 thỏa mãn a + b + c < 1.Tìm GTNN của biểu thức:
P = \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
Giải hộ nha mọi người
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(C\left(c;-c;-3\right)\in d_1\)
\(D\left(5d+16;d\right)\in d_2\)
\(\Rightarrow\overrightarrow{CD}=\left(5d+16-c;d+c+3\right)\)
ABCD là hình bình hành \(\Rightarrow\overrightarrow{CD}=\overrightarrow{BA}=\left(3;4\right)\)
\(\Rightarrow\begin{cases}5d+16-c=3\\d+c+3=4\end{cases}\)\(\Leftrightarrow\begin{cases}5d-c=-13\\d+c=1\end{cases}\)
\(\Leftrightarrow\begin{cases}d=-2\\c=3\end{cases}\)
\(\Rightarrow C\left(3;-6\right);D\left(6;-2\right)\)
Ta có : \(\overrightarrow{BA}=\left(3;4\right);\overrightarrow{BC}=\left(4;-3\right)\) không cùng phương => A, B, C, D không thẳng hàng => ABCD là hình bình hàng
Vậy \(C\left(3;-6\right);D\left(6;-2\right)\)
Áp dụng bđt Cô si với 2 số dương là: \(\sqrt{\frac{b+c}{a}}\) và 1 ta có:
\(\left(\frac{b+c}{a}+1\right):2\ge\sqrt{\frac{b+c}{a}.1}\)
\(\Leftrightarrow\) \(\frac{a+b+c}{2a}\ge\sqrt{\frac{b+c}{a}}\)
hay \(\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\left(1\right)\)
Tương tự như trên ta cũng có:
\(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\left(2\right)\)
\(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\left(3\right)\)
Từ (1); (2) và (3) \(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2.\left(a+b+c\right)}{a+b+c}=2\)
Dấu "=" xảy ra khi \(\begin{cases}\sqrt{\frac{b+c}{a}}=1\\\sqrt{\frac{a+c}{b}}=1\\\sqrt{\frac{a+b}{c}}=1\end{cases}\)\(\Leftrightarrow\begin{cases}\frac{b+c}{a}=1\\\frac{a+c}{b}=1\\\frac{a+b}{c}=1\end{cases}\)\(\Leftrightarrow\begin{cases}b+c=a\\a+c=b\\a+b=c\end{cases}\)
\(\Rightarrow2.\left(a+b+c\right)=a+b+c\)\(\Rightarrow a+b+c=0\), mâu thuẫn với đề bài a; b; c là các số dương
Như vậy dấu "=" không xảy ra
Do đó, \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}>2\left(đpcm\right)\)
Chứng minh bằng quy nạp :
Suy ra a = y+z , b = z+x , c = x+y
BĐT cần chứng minh trở thành \(xy^3+yz^3+zx^3-xyz\left(x+y+z\right)\ge0\)
\(\Leftrightarrow xyz\left[\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}-\left(x+y+z\right)\right]\ge0\)(*)
Áp dụng BĐT Cauchy cho các số dương ta có :
\(y+\frac{x^2}{y}\ge2x\) ; \(x+\frac{z^2}{x}\ge2z\) ; \(z+\frac{y^2}{z}\ge2y\)
Từ đó suy ra \(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\ge x+y+z\)
\(\Leftrightarrow\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}-\left(x+y+z\right)\ge0\)
Từ đó BĐT (*) được chứng minh. Từ đó suy ra BĐT ban đầu được chứng minh.
Theo giả thiết quy nạp ta có \(b^nc\left(b-c\right)\ge-a^nb\left(a-b\right)-c^na\left(c-a\right)\)
\(\Rightarrow b^{n+1}c\left(b-c\right)\ge-a^nb^2\left(a-b\right)-c^nab\left(c-a\right)\)
Do đó \(a^{n+1}b\left(a-b\right)+b^{n+1}c\left(b-c\right)+c^{n+1}a\left(c-a\right)\)
\(\ge a^{n+1}b\left(a-b\right)-a^nb^2\left(a-b\right)-c^nab\left(c-a\right)+c^{n+1}a\left(c-a\right)\)
\(=a^nb\left(a-b\right)^2+c^na\left(c-a\right)\left(c-b\right)\ge0\)
Vậy BĐT đúng với n + 1
Theo nguyên lí quy nạp BĐT đã cho đúng với mọi n > 1
Đẳng thức xảy ra khi a = b = c <=> Tam giác đã cho là tam giác đều.
Lời giải:
Cần chứng minh \(\frac{2a^3+1}{4b(a-b)}\geq 3\)
Áp dụng BĐT Am-Gm ngược dấu \(4b(a-b)\leq (b+a-b)^2=a^2\)
\(\Rightarrow \frac{2a^3+1}{4b(a-b)}\geq \frac{2a^3+1}{a^2}=2a+\frac{1}{a^2}=a+a+\frac{1}{a^2}\geq3\sqrt[3]{\frac{a^2}{a^2}}=3\)
Do đó ta có đpcm
Dấu $=$ xảy ra khi \(\left\{\begin{matrix} b=a-b\\ a=\frac{1}{a^2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=1\\ b=\frac{1}{2}\end{matrix}\right.\)
a) 18km/h = 5m/s
vận tốc của vật sau 3 giây là : \(v_3=5+3a\)
vận tốc của vật sau 4 giây là : \(v_4=5+4a\)
Ta có : \(v^2_4-v_3^2=2as\)
\(\Leftrightarrow7a^2-14a=0\)
\(\Leftrightarrow a=2m\)/s2
b) vân tốc sau 10 giây là : \(v_{10}=5+10.2=25m\)/s
\(\Rightarrow s=\frac{v_{10}^2}{2a}=156,25m\)
Ta có : \(a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=0\Leftrightarrow a.\overrightarrow{IA}+\left(b+c\right).\overrightarrow{IA'}=\overrightarrow{0}\) (Công thức thu gọn)
\(\Rightarrow I\in AA'\) và
\(\frac{IA}{IA'}=\frac{b+c}{a}=\frac{c}{\frac{ac}{b+c}}=\frac{BA}{BA'}\)
Nhờ vào tính chất đường phân giác, dễ dàng thấy điểm I thuộc tia phân giác góc B, tức I là tâm của đường tròn ngoại tiếp tam giác ABC
=> Điều đó đúng với giả thiết.
Vậy ta có đpcm
\(hpt\Leftrightarrow\begin{cases}y=\frac{60x^2}{36x^2+25}\\z=\frac{60y^2}{36y^2+25}\\x=\frac{60z^2}{36z^2+25}\end{cases}\)
Từ hệ suy ra x,y,z không âm. Nếu x=0 thì y=z=0 suy ra (0;0;0) là nghiệm của hệ phương trình.
Nếu x>0 thì y>0, z>0. Xét hàm số \(f\left(t\right)=\frac{60t^2}{36t^2+25},t>0\)
Ta có: \(f'\left(t\right)=\frac{3000t}{\left(36t^2+25\right)^2}>0\) với mọi t>0
Do đó \(f\left(t\right)\) đồng biến trên khoảng \(\left(0;+\infty\right)\)
Hệ pt đc viết lại \(\begin{cases}y=f\left(x\right)\\z=f\left(y\right)\\x=f\left(z\right)\end{cases}\)
Từ tính đồng biến của f(x) suy ra x=y=z. Thay vào hệ ta được
x(36x2-60x+25)=0. Chọn \(x=\frac{5}{6}\)
Vậy tập nghiệm của hệ pt là \(\left\{\left(0;0;0\right);\left(\frac{5}{6};\frac{5}{6};\frac{5}{6}\right)\right\}\)
1. please remember to post this letter. ( post )
2. do you mind travelling such a long way to work every day ? ( travel )
3. he tried to reach the shelf but he wasn't tall enough. ( reach )
4. the driver stopped saying hello to her. ( say )
5. tourists are not allowed to talk in the Temple. ( talk )
6. the teacher doesn't allow to use dictionaries in the final examination. ( use )
7. he tried to avoid answering my question.( answer )
8. Paula has given up smoking for many years.( smoke )
9. we decided to stay at home.( stay )
10. i don't advise anybody to stay in that hotel. ( stay )
11. my parents don't let me go out alone. ( go )
12.this door needs to paint blue.
13.try to use our product.
14. she never considers flying overseas some time in the future.
15. i distinctly remember to pay him. I gave him 10 dollars.
16. it had better to be sure than sorry.
17. don't forget to lock the door before going to bed,Tom.
18. would you mind showing me how to use this computer?
19. she spent much money buying foods and drinks
20. most students enjoy going camping
1: to post
2:travelling
3;to reach
4:to say(dừng lại để làm j thì to V,chứ ở đây không phải dừng làm j+ving)
5:to talk
6:using(allow +ving,nếu là be allowed thì mới là +to v)
7:aswering
8:smoking
9:to stay
10:to stay
11:go
12:to be painted/painting
13:to use
14 : flying
15:paying(ở đây là nhớ đã trả nên là + ving,chứ không phải là + to v là nhớ để trả)
16:be(khuyết thiếu mà)
17:to lock/going
18:showing/to use
19:buying
20:going
Đây là đáp án của mk theo đúng kiến thức mk đã học.
Bài của mk khác bài bạn @Phương An
C. Rewrite the sentence
1. Could you turn the radio down,please ?
-> Woul you mind turning the radio down, please?
2. Shall we practise playing football ?
-> What about practising playing football?
3. It's not a good idea to traval during the rush-hour.
-> It's better to avoid traveling during the rush-hour.
4. He listen to rock music . He is very fond of it .
-> He is very fond of rock music.
5. Don't you remember you lent me money last month ?
-> I can't remember that I lent you money last month.
6. Paul doesn't like talking to them .
-> Paul hates talking to them.
7. I would like you to help me to do some difficult exercises.
-> Do you mind helping me to do some difficult exercises?
8. Why don't we watch TV for a change ?
-> I suggest watching TV for a change.
9. He wrote the letters in two hours.
-> He spent two hours writing the letters.
10. We find it necessary to learn English.
-> Learning English is necessary.
D. Make questions for the underlined part of each statement below:
1. When was she killed?
She was killed in 1999.
2. How often do you go to the cinema?
I go to the cinema twice a month
3. Where did they work?
They worked in the suburb
4. Who did you go to Hanoi with?
I went to HANOI with her boyfriend
5. Who teaches you English?
Mr Phuc teaches me English
6. How long is this room?
The room is 5 meters in length
7. How does he speak English?
He speaks English fluently
8. When did you started to learn English?
We started to learn English 5 years ago
9. How many eggs does she have?
She has a dozen of eggs
10. How far is it from your house to your school?
It's about 2,5 km from my school to my house
Ta thấy:
\(\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)=\left(a+b+c\right)^2\le1\)
Áp dụng BĐT AM-GM ta có:
\(P\ge\left[\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)\right]\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\right)\)
\(\ge3\sqrt[3]{\left(a^2+2bc\right)\left(b^2+2ac\right)\left(c^2+2ab\right)}\cdot3\sqrt[3]{\frac{1}{a^2+2bc}\cdot\frac{1}{b^2+2ac}\cdot\frac{1}{c^2+2ab}}=9\)
Dấu "="xảy ra khi \(\left\{\begin{matrix}a+b+c=1\\a^2+2bc=b^2+2ac=c^2+2ab\end{matrix}\right.\)\(\Rightarrow a=b=c=\frac{1}{3}\)
Vậy \(Min_P=9\) khi \(a=b=c=\frac{1}{3}\)