Hiền Thương
Giới thiệu về bản thân
\(\dfrac{x}{2\cdot5}+\dfrac{x}{5\cdot8}+\dfrac{x}{8\cdot11}+\dfrac{x}{11\cdot14}+...+\dfrac{x}{32\cdot35}=\dfrac{33}{70}\)
\(\Leftrightarrow x\left(\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+\dfrac{1}{11\cdot14}+...+\dfrac{1}{32\cdot35}\right)=\dfrac{33}{70}\)
\(\Rightarrow x\cdot\dfrac{1}{3}\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+...+\dfrac{3}{32\cdot35}\right)=\dfrac{33}{70}\)
\(\Leftrightarrow x\cdot\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{32}-\dfrac{1}{35}\right)=\dfrac{33}{70}\)
\(\Leftrightarrow x\cdot\dfrac{1}{3}\cdot\left(\dfrac{1}{2}-\dfrac{1}{35}\right)=\dfrac{33}{70}\)
\(x\cdot\dfrac{1}{3}\cdot\dfrac{33}{70}=\dfrac{33}{70}\)
\(x=\dfrac{33}{70}:\dfrac{33}{70}:\dfrac{1}{3}\)
\(x=3\)
\(M=\dfrac{4n+3}{n-5}=\dfrac{4\left(n-5\right)+23}{n-5}=4+\dfrac{23}{n-5}\)
Để M nguyên =>\(\dfrac{23}{n-5}\) nguyên
=>\(23⋮n-5\Leftrightarrow n-5\inƯ\left(23\right)\)
\(n-5\in\left\{1;23;-1;-23\right\}\)
\(n\in\left\{6;28;4;-18\right\}\)
a,Có
A = \(x^2-4x+7\)
\(A=\left(x^2-4x+4\right)+3\)
\(A=\left(x-2\right)^2+3\) \(\ge\)3
Vì \(\left(x-2\right)^2\ge0\forall x\)
Dấu''='' xảy ra khi x=2
Vậy Amin = 3 khi x=2
b, Có
\(B=x^2+10x\)
\(B=\left(x^2+10x+25\right)-25\)
\(B=\left(x+5\right)^2-25\ge-25\)
Vì \(\left(x+5\right)^2\ge0\forall x\)
Dấu''='' xảy ra khi x=-5
Vậy Bmin = -25 khi x=-5
c,Có
\(C=2x^2-4x+15\)
\(C=2\left(x^2-2x+1\right)+13\)
\(C=2\left(x-1\right)^2+13\ge13\)
Vì \(2\left(x-1\right)^2\ge0\forall x\)
Dấu ''='' xảy ra khi x = 1
Vậy Cmin = 13 khi x=1
d,Có
\(M=x^2-3x+2022\)
\(M=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{8079}{4}\)
\(M=\left(x-\dfrac{3}{2}\right)^2+\dfrac{8079}{4}\) \(\ge\) \(\dfrac{8079}{4}\)
Vì \(\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\)
Dấu ''='' xảy ra khi x= 3/2
Vậy Mmin = \(\dfrac{8079}{4}\) khi x= 3/2
Gọi chiều rộng là x (cm),còn chiều dài là 2.x(cm)
Theo bài ra ta có:
x*2*x=18
x*x=9
Vì 9 = 3*3 => x=3 ; 2*x =6
Vậy chiều rộng hình chữ nhật là 3 cm , chiều dài là 6 cm
Chu vi hình chữ nhật đó là:
(3+6).2 =18 (cm)
\(\sqrt{\dfrac{1}{2}x+1}-1=\dfrac{1}{2}\)
\(\sqrt{\dfrac{1}{2}x+1}=\dfrac{1}{2}+1\)
\(\sqrt{\dfrac{1}{2}x+1}=\dfrac{3}{2}\)
\(\sqrt{\dfrac{1}{2}x+1}=\sqrt{\dfrac{9}{4}}\)
=>\(\dfrac{1}{2}x+1=\dfrac{9}{4}\)
\(\dfrac{1}{2}x=\dfrac{5}{4}\)
\(x=\dfrac{5}{2}\)
\(\sqrt{x^2+1}=2\)
\(\Leftrightarrow\sqrt{x^2+1}=\sqrt{4}\)
\(\Rightarrow x^2+1=4\)
\(x^2=3\)
=>\(x=\sqrt{3}\)
Ta có
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2b}{6}=\dfrac{3c}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ,có
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b+3c}{2+6+12}=\dfrac{-20}{20}=-1\)
=>\(\left\{{}\begin{matrix}a=-2\\b=-3\\c=-4\end{matrix}\right.\)
Khi nháp thì mình nghĩ câu b số hạng cuối của tổng phải là \(2^{x+2015}\)
Vậy sau khi sửa đề mình làm câu b nhé
Ta có \(2^x+2^{x+1}+2^{x+2}+2^{x+3}+...+2^{x+2015}\)
\(=2^x+2^x.2+2^x.2^2+2^x.2^3+...+2^x.2^{2015}\)
\(=2^x\left(1+2+2^2+2^3+...+2^{2015}\right)\)(1)
Đặt \(A=1+2+2^2+2^3+...+2^{2015}\)
=>2A = 2 +22 +23 +24 +...+22016
=>2A-A =A= 22016 -1 (2)
Từ (1);(2) =>\(2^x+2^{x+1}+2^{x+2}+2^{x+3}+...+2^{x+2015}\)
= \(2^x.\left(2^{2016}-1\right)\)
Mà \(2^x+2^{x+1}+2^{x+2}+2^{x+3}+...+2^{x+2005}\) = 22019 -8
Nên \(2^x\left(2^{2016}-1\right)=2^{2019}-8\)
=>\(2^x=\dfrac{2^{2019}-8}{2^{2016}-1}=\dfrac{2^3\left(2^{2016}-1\right)}{2^{2016}-1}=2^3\)
=> x=3
Tớ lật lại sách lớp 6 ,thấy bản thân làm như dưới,không biết có được gọi là thuận tiện ko.
\(2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2}}}}=2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{\dfrac{5}{2}}}}=2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{2}{5}}}\)
\(=2+\dfrac{1}{2+\dfrac{1}{\dfrac{12}{5}}}=2+\dfrac{1}{2+\dfrac{5}{12}}=2+\dfrac{1}{\dfrac{29}{12}}=2+\dfrac{12}{29}=\dfrac{70}{29}\)
a,\(5^{x-2}-3^2=2^4-\left(2^8.2^4+2^{10}.2^2\right)\)
\(\Leftrightarrow5^{x-2}-3^2=2^4-\left(2^{12}-2^{12}\right)\)
\(\Leftrightarrow5^{x-2}-3^2=2^4\)
\(\Leftrightarrow5^{x-2}=2^4+3^2\)
\(5^{x-2}=25\)
\(5^{x-2}=5^2\)
=> x-2 =2
=> x=4 b,
b,\(697:\left[\left(15.x+264\right):x\right]=17\)
\(\Rightarrow\left(15.x+364\right):x=697:17\)
\(\left(15.x+364\right):x=41\)
\(\Rightarrow15.x+364=41.x\)
\(\Rightarrow15.x-41.x=-364\)
\(-26x=-364\)
=> x= -364 :-26 = 14
c,\(134:\left(x-3\right)=35+160:5\)
\(134:\left(x-3\right)=35+32\)
\(134:\left(x-3\right)=67\)
=> x-3= 134 :67
x- 3 =2
=> x= 5
d,\(\left(3.x-2^4\right).7^3=2.7^4\)
\(3.x-2^4=2.7^4:7^3\)
\(3.x-2^4=2.\left(7^4:7^3\right)\)
\(3.x-2^4=2.7\)
\(3.x-2^4=14\)
\(3.x=14+2^4\)
3x =30
=> x=10
e,\(\left[\left(10-x\right).2+5\right]:3-2=3\)
\(\left[\left(10-x\right).2+5\right]:3=3+2\)
\(\left[\left(10-x\right).2+5\right]:3=5\)
\(\left(10-x\right).2+5=15\)
\(\left(10-x\right).2=10\)
=> 10-x = 5
=> x =10 -5
x =5