Phân tích đa thức thành nhân tử
ax-2x-a^2+2a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+4ax+x+2a\)
\(=2x\left(x+2a\right)+\left(x+2a\right)\)
\(=\left(x+2a\right)\left(2x+1\right)\)
Bài 1:
a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)
\(=\left(2x+1\right)\left(3-2x+5\right)\)
\(=\left(2x+1\right)\left(8-2x\right)\)
\(=2\left(4-x\right)\left(2x+1\right)\)
b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)
\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)
\(=\left(3x-2\right)\left(3x-6\right)\)
\(=3\left(3x-2\right)\left(x-2\right)\)
Bài 2:
a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)
\(=\left(a-b\right)\left(2a-4b\right)\)
\(=2\left(a-b\right)\left(a-2b\right)\)
f: Ta có: \(x^2-6xy+9y^2+4x-12y\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-3y+4\right)\)
a) 4(2x-3)^2-9(4x^2-9)^2
=[2(2x-3)]^2-[3(4x^2-9)]^2
=(4x-6)^2-(12x^2-27)^2
=(4x-6+12x^2-27)(4x-6-12x^2+27)
=(12x^2+4x-33)(4x-12x^2+21)
b) a^6-a^4+2a^3+2a^2
=a^4(a^2-1)+2a^2(a+1)
=a^4(a+1)(a-1)+2a^2(a+1)
=(a+1)[(a^4)(a-1)+2a^2]
=(a+1)(a^5+a^4+2a^2)
2x^5-6x^4-2a^2x^3-6ax^3
=(2x^5-2a^2x^3)-(6x^4+6ax^3)
=2x^3(x^2-a^2)-6x^3(x+a)
=2x^3(x-a)(x+a)-6x^3(x+a)
=(x+a)(2x^4-2x^3a-6x^3)
=(x+a) 2x^3 (x-a-3)
\(a\sqrt{a}+2a+\sqrt{a}+2=\left(a\sqrt{a}+2a\right)+\left(\sqrt{a}+2\right)\)
\(=a\left(\sqrt{a}+2\right)+\left(\sqrt{a}+2\right)=\left(\sqrt{a}+2\right)\left(a+1\right)\)
a: 2x+4=2(x+2)
b: \(x^2+2xy+y^2-9=\left(x+y-3\right)\left(x+y+3\right)\)
Phân tích đa thức thành nhân tử:
\(\left(4x^2-25\right)^2-9\left(2x-5\right)^2\)
\(a^6-a^4+2a^3+2a^2\)
a) \(\left(4x^2-25\right)^2-9\left(2x-5\right)^2\)
\(=\left(4x^2-25\right)^2-\left(6x-15\right)^2\)
\(=\left(4x^2-25-6x+15\right)\left(4x^2-25+6x-15\right)\)
\(=\left(4x^2-6x-10\right)\left(4x^2+6x-40\right)\)
\(=\left(4x^2+4x-10x-10\right)\left(4x^2+16x-10x-40\right)\)
\(=\left[4x\left(x+1\right)-10\left(x+1\right)\right]\left[4x\left(x+4\right)-10\left(x+4\right)\right]\)
\(=\left(4x-10\right)\left(x+1\right)\left(4x-10\right)\left(x+4\right)\)
\(=\left(4x-10\right)^2\left(x+1\right)\left(x+4\right)\)
\(=4\left(2x-5\right)^2\left(x+1\right)\left(x+4\right)\)
b) \(a^6-a^4+2a^3+2a^2\)
\(=a^2\left(a^4-a^2+2a+2\right)\)
\(=a^2\left(a^4+a^3-a^3-a^2+2a+2\right)\)
\(=a^2\left[a^3\left(a+1\right)-a^2\left(a+1\right)+2\left(a+1\right)\right]\)
\(=a^2\left(a+1\right)\left(a^3-a^2+2\right)\)
ax - 2x - a2 + 2a
= x(a - 2) - a(a - 2)
= (x - a)(a - 2)
\(ax-2x-a^2+2a\)
\(=\left(ax-2x\right)-\left(a^2-2a\right)\)
\(=x\left(a-2\right)-a\left(a-2\right)\)
\(=\left(a-2\right)\left(x-a\right)\)