So sanh : U = \(\frac{2009^{2005}+1}{2009^{2010}+1}\)va V = \(\frac{2009^{2010}+2}{2009^{2011}+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a ta so sánh số đối của 2 phân số này.nếu ps nào có giá trị tuyệt đối lớn hơn thì nhỏ hơn.
câu b ta nhân cả A và B với 2009 rồi so sánh 2009A với 2009B.ta được A>B
Ta có:
\(B=\dfrac{2009^{2010}-2}{2009^{2011}-2}\)
\(B< \dfrac{2009^{2010}-2+2011}{2009^{2011}-2+2011}\)
\(B< \dfrac{2009^{2010}+2009}{2009^{2011}+2009}\)
\(B< \dfrac{2009\left(2009^{2009}+1\right)}{2009\left(2009^{2010}+1\right)}\)
\(B< \dfrac{2009^{2009}+1}{2009^{2010}+1}\)
Mà \(A=\dfrac{2009^{2009}+1}{2009^{2010}+1}\)
\(\Rightarrow B< A\)
\(B=\frac{2009^{2010}-2}{2009^{2011}-2}< 1\)
\(\Rightarrow B=\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}\)\(=\frac{2009.\left(2009^{2009}+1\right)}{2009.\left(2009^{2010}+1\right)}=\frac{2009^{2009}+1}{2009^{2010}+1}\)
Suy ra : \(\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2009}+1}{2009^{2010}+1}\) hay \(B< A\)
Vậy \(A>B\)
Do 2009\(^{2010}\)-2 < 2009\(^{2011}\)-2 \(\Rightarrow\)B<1
Theo đề bài ta có:
B= \(\frac{2009^{2010}-2}{2009^{2011}-2}\)< \(\frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}\)= \(\frac{2009^{2010}+2009}{2009^{2011}+2009}\)= \(\frac{2009.\left(1+2009^{2009}\right)}{2009.\left(1+2009^{2010}\right)}\)= \(\frac{2009^{2009}+1}{2009^{2010}+1}\)= A \(\Rightarrow\)B<A