Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:20092010-2/20092011-2
=>20092010+2009-2011/20092011+2009-2011
=>2009(20092009+1)-2011/2009(20092010+1)-2011
=>20092009+1-2011/20092010+1-2011<A
Vậy A>B
Tại mình hấp tấp quá nên khúc đầu lỡ gạch trên.
Vì B là phân số bé hơn 1 nên cộng cùng một số vào tử và mẫu của phân số đó thì giá trị của B sẽ tăng thêm, ta có:
\(B=\frac{2009^{2009}+1}{2009^{2010}+1}< \frac{2009^{2009}+1+2008}{2009^{2010}+1+2008}=\frac{2009^{2009}+2009}{2009^{2010}+2009}=\frac{2009\left(2009^{2008}+1\right)}{2009\left(2009^{2009}+1\right)}=\frac{2009^{2008}+1}{2009^{2009}+1}=A\)
Vậy B < A
2009A=2009^2010+2009/2009^2010+1 2009B=2009^2011-4018/2009^2011-2
2009A=1 + 2009/2009^2010+1 B=1 - 4016/2009^2011-2
mình viết tách ra cho khỏi nhầm
vì A>1 và B<1
nên A>B
VẬY A>B AND kết bạn nha
A=2009^2009+1/2009^2010+1 B=2009^2010-2/2009^2011-2
A=(2009^2009+1).10/2009^2010+1 B=(2009^2010-2).10/2009^2011-2
A=2009^2010+10/2009^2010+1 B= 2009^2011-20/2009^2010-2
A=(2009^2010+1)+9/2009^2010+1 B=(2009^2011-2)-18/2009^2010-2
A=1 + 9/2009^2010+1 B=1+(-18/2009^2010-2)
Vì 9/2009^2010+1 > (-18/2009^2010-2)
=>1 + 9/2009^2010+1>1+(-18/2009^2010-2)
Hay 2009^2009+1/2009^2010+1 > 2009^2010-2/2009^2011-2
Vậy A>B
B = 2009^2010 - 2 / 2009^2011 - 2 < 2009^2010 - 2 + 2011 /2009^2011 - 2 + 2011
= 2009^2010 + 2009 / 2009^2011 + 2009
= 2009 ( 2009^2009 + 1) / 2009(2009^2010 + 1)
= 2009^2009 + 1 / 2009^2010 + 1 = A
=> B < A
B=20092010-2/20092011-2<20092010-2+2011/20092011-2+2011=20092010+2009/20092011+2009 =2009.(20092009+1)/2009.(20092010+1)=20092009+1/20092010+1
Suy ra A>B
Do 2009\(^{2010}\)-2 < 2009\(^{2011}\)-2 \(\Rightarrow\)B<1
Theo đề bài ta có:
B= \(\frac{2009^{2010}-2}{2009^{2011}-2}\)< \(\frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}\)= \(\frac{2009^{2010}+2009}{2009^{2011}+2009}\)= \(\frac{2009.\left(1+2009^{2009}\right)}{2009.\left(1+2009^{2010}\right)}\)= \(\frac{2009^{2009}+1}{2009^{2010}+1}\)= A \(\Rightarrow\)B<A
Ta có:
\(B=\dfrac{2009^{2010}-2}{2009^{2011}-2}\)
\(B< \dfrac{2009^{2010}-2+2011}{2009^{2011}-2+2011}\)
\(B< \dfrac{2009^{2010}+2009}{2009^{2011}+2009}\)
\(B< \dfrac{2009\left(2009^{2009}+1\right)}{2009\left(2009^{2010}+1\right)}\)
\(B< \dfrac{2009^{2009}+1}{2009^{2010}+1}\)
Mà \(A=\dfrac{2009^{2009}+1}{2009^{2010}+1}\)
\(\Rightarrow B< A\)
\(B=\frac{2009^{2010}-2}{2009^{2011}-2}< 1\)
\(\Rightarrow B=\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}\)\(=\frac{2009.\left(2009^{2009}+1\right)}{2009.\left(2009^{2010}+1\right)}=\frac{2009^{2009}+1}{2009^{2010}+1}\)
Suy ra : \(\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2009}+1}{2009^{2010}+1}\) hay \(B< A\)
Vậy \(A>B\)