Cho tam giác ABC vuông tại A có AB > AC. Điểm M thuộc cạnh AB. Đường tròn tâm O đường kính BM cắt BC tại N
a, AMNC là tứ giác nội tiếp
b, \(\dfrac{BM}{BN}=\dfrac{MC}{NA}\)
c, Đường tròn ngoại tiếp tam giác AON cắt CM tại P. chứng minh rằng đoạn thẳng OP có độ dài không đổi khi M di động trên cạnh AB
a) Dễ thấy tứ giác AMNC nội tiếp đường tròn đường kính MN.
b) Ta có tứ giác AMNC nội tiếp nên \(\angle BCM=\angle BAN\). Suy ra \(\Delta BCM\sim\Delta BAN\left(g.g\right)\).
Từ đó \(\dfrac{BM}{BN}=\dfrac{CM}{AN}\).
c) Gọi P' là trung điểm của MC.
Khi đó P' là tâm của đường tròn ngoại tiếp tứ giác AMNC.
Ta có \(\widehat{AP'N}=2\widehat{ACN}=180^o-2\widehat{ABC}=180^o-\widehat{MON}\). Suy ra tứ giác AONP' nội tiếp.
Từ đó \(P'\equiv P\). Ta có \(OP=OP'=\dfrac{BC}{2}\) (đường trung bình trong tam giác BMC) không đổi khi M di động trên cạnh AB.