tìm x sao cho giá trị của 2 biểu thức \(\dfrac{6x-1}{3x+2}\) và \(\dfrac{2x+5}{x-3}\) bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(y\ne1;y\ne3\).
Ta có \(\dfrac{y+5}{y-1}-\dfrac{y+1}{y-3}=\dfrac{-8}{\left(y-1\right)\left(y-3\right)}\)
\(\Leftrightarrow\dfrac{\left(y+5\right)\left(y-3\right)-\left(y+1\right)\left(y-1\right)}{\left(y-1\right)\left(y-3\right)}=\dfrac{-8}{\left(y-1\right)\left(y-3\right)}\)
\(\Rightarrow\left(y+5\right)\left(y-3\right)-\left(y+1\right)\left(y-1\right)=-8\Leftrightarrow\left(y^2+2y-15\right)-\left(y^2-1\right)=-8\Leftrightarrow2y-14=-8\Leftrightarrow y=3\). (loại)
Vậy không tồn tại y thỏa mãn
a, ĐKXĐ: \(x\ne1;x\ne-1\)
b, Với \(x\ne1;x\ne-1\)
\(B=\left[\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\left[\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\dfrac{5}{x^2-1}\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =4\)
=> ĐPCM
\(\left(x-1\right)^2+\left(x+3\right)^2=\left(x-2\right)\left(x+1\right)+12\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(x^2+6x+9\right)=x^2-x-2+12\)
\(\Leftrightarrow2x^2+4x+10=x^2-x+10\)
\(\Leftrightarrow2x^2+4x=x^2-x\)
\(\Leftrightarrow x^2+4x=-x\)
\(\Leftrightarrow x^2+5x=0\)
\(\Leftrightarrow x\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}}\)
a) C được xác định <=> x khác +- 2
b) Ta có : \(C=\dfrac{x^3}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-1\right)\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)
Để C = 0 thì x - 1 = 0 <=> x = 1 (tm)
c) Để C nhận giá trị dương thì x - 1 > 0 <=> x > 1
Kết hợp với ĐK => Với x > 1 và x khác 2 thì C nhận giá trị dương
a, ĐKXĐ: x≠±3
A=\(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{3-x}{x+3}.\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{3-x}{x-3}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{9-x^2}{x^2-9}+\dfrac{x^2-3x}{x^2-9}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{-3}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\dfrac{-1}{x^2}\)
b, Thay x=\(-\dfrac{1}{2}\) (TMĐKXĐ) vào A ta có:
\(\dfrac{-1}{\left(-\dfrac{1}{2}\right)^2}\)=-4
c, A<0 ⇔ \(\dfrac{-1}{x^2}< 0\) ⇔ x2>0 (Đúng với mọi x)
Vậy để A<0 thì x đúng với mọi giá trị (trừ ±3)
a)
\(S=\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}+\dfrac{x}{6-x}\)
\(S=\left(\dfrac{x}{\left(x+6\right)\left(x-6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}-\dfrac{x}{x-6}\)
\(S=\left(\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}-\dfrac{x}{x-6}\)
\(S=\left(\dfrac{x^2-x^2+12x-36}{x\left(x+6\right)\left(x-6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}-\dfrac{x}{x-6}\)
\(S=\dfrac{12\left(x-3\right)}{x\left(x+6\right)\left(x-6\right)}\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}-\dfrac{x}{x-6}\)
\(S=\dfrac{6}{x-6}-\dfrac{x}{x-6}\)
\(S=\dfrac{6-x}{x-6}=-1\)
b) Vì giá trị của biểu thức S không phụ thuộc vào giá trị của biến nên với mọi giá trị của x ta đều có giá trị của S là - 1.
c/
Ta có : B=2=>6/2-2x
<=>6=4-4x
<=>6-4=-4x
<=>-4x=2
<=>x=2/-4=-1/2
d/ĐKXĐ:2-2x≠0
<=>2(1-x)≠0<=>-2(x-1)≠0
<=>x≠1
Để giá trị của biểu thức B nguyên thì 2-2x là Ư(6)
=>2-2x ∈ Ư(6)={±1;±2;±3;±6) Nếu 2-2x=1=> -2x=-1=>x=1/2( thoả mãng)
Rồi còn nhiêu bạn tự xét trường hợp y trang cách làm ở trênn nnhan :;)).À sẽ có mấy cái trường hợp nó giống ĐKXĐ thì bạn ghi trong ngoặc ko thoã mãn nhan.
`a)ĐK:(x+1)(2x-6) ne 0`
`<=>(x+1)(x-3) ne 0`
`<=> x ne -1,x ne 3`
`b)C=(3x^2+3x)/((x+1)(2x-6))`
`=(3x(x+1))/((x+1)(2x-6))`
`=(3x)/(2x-6)`
`C=1`
`=>3x=2x-6`
`<=>x=-6(tm)`
Vậy `x=-6`
tìm các giá trị của a sao cho biểu thức sau có giá trị bằng 2
\(\dfrac{2a^2-3a-2}{a^2-4}\)
\(\dfrac{2a^2-3a-2}{a^2-4}=2\)
\(\Leftrightarrow2a^2-3a-2-2a^2+8=0\)
\(\Leftrightarrow-3a+6=0\)
\(\Leftrightarrow a=2\)
ĐK: `a \ne \pm 2`
`(2a^2-3a-2)/(a^2-4)=2`
`<=>2a^2-3a-2=2(a^2-4)`
`<=>2a^2-3a-2=2a^2-8`
`<=>-3a-2=-8`
`<=>-3a=-6`
`<=>a=2` (Loại)
Vậy không có `a` thỏa mãn.
ĐK: \(x\ne-\dfrac{2}{3};x\ne3\)
\(\dfrac{6x-1}{3x+2}=\dfrac{2x+5}{x-3}\Rightarrow\left(6x-1\right)\left(x-3\right)=\left(2x+5\right)\left(3x+2\right)\)
\(\Leftrightarrow6x^2-19x+3=6x^2+19x+10\Leftrightarrow38x=-7\Leftrightarrow x=-\dfrac{7}{38}\).
ĐKXĐ : x ≠ -2/3 ; x ≠ 3
\(\dfrac{6x-1}{3x+2}=\dfrac{2x+5}{x-3}\Rightarrow\left(6x-1\right)\left(x-3\right)=\left(3x+2\right)\left(2x+5\right)\)
\(\Leftrightarrow6x^2-19x+3=6x^2+19x+10\)
\(\Leftrightarrow-38x=7\Leftrightarrow x=-\dfrac{7}{38}\)(tm)
Vậy ...