Cho tam giác ABC, I là trung điểm của AB. Qua I kẻ đường thẳng song song với BC, nó cắt cạnh AC tại K. Qua K kẻ đường thẳng song song với AB, nó cắt cạnh BC tại H. CMR:
a/ tam giác AIK = tam giác KHC
b/ AK = KC và AK = IH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+)Xét tam giác BDF và ∆EFD có:
DF chung
∠BDF = ∠DFE ( hai góc so le trong; BC// EF)
∠BFD = ∠FDE ( hai góc so le trong; DE// AB)
Suy ra:∆ BDF = ∆EFD (g.c.g)
Suy ra BD = EF. Theo giả thiết, D là trung điểm của BC nên CD = DB = EF.
+) Xét ∆ CDE và ∆ EFA có :
CD = EF ( chứng minh trên)
∠(CDE) = ∠(EFA) = ∠(CBA)
∠(ECD) = ∠(AEF) (các góc đồng vị).
Suy ra: ∆ CDE = ∆ EFA ( g.c.g)
Suy ra CE = EA nên E là trung điểm của CD.
a: Xét tứ giác BFED có
ED//BF
FE//BD
Do đó: BFED là hình bình hành
Xét ΔABC có
D là trung điểm của BC
DE//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
E là trung điểm của AC
EF//CB
Do đó: F là trung điểm của AB
Xét ΔCDE và ΔEFA có
CD=EF
DE=FA
CE=EA
Do đó: ΔCDE=ΔEFA
b: Gọi ΔABC có F là trung điểm của AB,E là trung điểm của AC
Trên tia FE lấy điểm E sao cho E là trung điểm của FK
Xét tứ giác AFCK có
E là trung điểm của AC
E là trung điểm của FK
Do đó: AFCK là hình bình hành
Suy ra: AF//KC và KC=AF
hay KC//FB và KC=FB
Xét tứ giác BFKC có
KC//FB
KC=FB
Do đó: BFKC là hình bình hành
Suy ra: FE//BC(ĐPCM)
Ta có: DK // AB (gt)
hay DK // AI
DI // AC (gt)
hay DI // AK
Vậy tứ giác AIDK là hình bình hành
a/ Vì AK // IH nên AI = KH và AK = IH ( vì phần ghi nhớ ở bài 1 đó )
Vì IK // HC nên IK = HC và IH = KC
Xét tam giác AIK và tam giác IKH có:
\(\hept{\begin{cases}AI=KH\\IK:canh\\AK=IH\end{cases}}chung\)
suy ra tam giác AIK = tam giác HKI ( c.c.c )
Xét tam giác IKH và tam giác KHC có :
\(\hept{\begin{cases}IK=HC\\KH:canh\\IH=KC\end{cases}}chung\)
suy ra tam giác HKI = tam giác KHC ( c.c.c )
mà tam giác AIK = tam giác HKI
tam giác HKI = tam giác KHC
suy ra tam giác AIK = tam giac KHC( đpcm )
b/ Vì tam giác AIK = tam giác KHC
nên AK = CK ( vì là 2 cạnh tương ứng )
Vậy :........
hay AI = HK ( vì là 2 cạnh tương ứng )
mà AI = BI ( vì I là tring điểm của AB )
nên BI = HK ( = AI )
Vậy: ......
Vân Khánh đây là bài làm nhé! Nhớ k nghe! Thank you!!!
a) Nối IH
Xét 2 tam giác: \(\Delta\)BIH và \(\Delta\)KHI có
IH cạnh chung
\(\widehat{BIH}\)= \(\widehat{KHI}\)( so le trong do AB // KH)
\(\widehat{IHB}\)= \(\widehat{HIK}\)( so le trong do IK // BC)
suy ra \(\Delta\)BIH = \(\Delta\)KHI (g.c.g)
\(\Rightarrow\)IB = KH (2 cạnh tương ứng)
mà IB = IA nên IA = KH
\(\widehat{AIK}\)= \(\widehat{IBH}\)(đồng vị do IK // BC)
\(\widehat{IBH}\)= \(\widehat{KHC}\)(đồng vị do KH // AB)
suy ra \(\widehat{AIK}\)= \(\widehat{KHC}\)
Xét 2 tam giác: \(\Delta\)AIK và \(\Delta\)KHC có:
IA = HK (cmt)
\(\widehat{AIK}\)= \(\widehat{KHC}\)(cmt)
\(\widehat{IAK}\)= \(\widehat{HKC}\)(đồng vị do HK // AB)
suy ra \(\Delta\)AIK = \(\Delta\)KHC (g.c.g)
b) \(\Delta\)AIK = \(\Delta\)KHC (theo phần a) \(\Rightarrow\)AK = KC (2 cạnh tương ứng)
Xét \(\Delta\)AIK và \(\Delta\)HKI có:
AI = HK (cm)
\(\widehat{AIK}\)= \(\widehat{HKI}\)(so le trong do HK // AB)
IK cạnh chung
suy ra \(\Delta\)AIK = \(\Delta\)HKI (c.g.c)
\(\Rightarrow\)AK = IH (2 cạnh tương ứng)