K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2017

tự kẻ hình nhé ,ko thì có j ib mk kẻ hộ cx dk ak

b )xét tứ giác hbea có 2 đường chéo he và ba giao tại f 

mà f là trung điểm của he ,f là trung điểm của ba 

=>  hbea là hbh => hb //ae ;hb = ae                              (1)

 xét tứ giác aecg có ge và ca là 2 đường chéo giao tại d 

mà d là tủng điểm của ge ;d là trung diểm của ca 

=> aecg là hbh => cg = ae ;cg // ae                       (2) 

từ (1) và (2) => hb//cg ;hb=cg => hbcg lag hbh 

có ae //cg mà ae vuông góc với bc =. bc vuông góc với cg => bcg = 90 độ mà hbcg lag hbh => hbcg là hcn 

a: Xét ΔABC có AD/AB=AE/AC

nên DE//BC và DE=BC/2

=>DE//BF và DE=BF

=>BDEF là hình bình hành

b: Xét ΔBAC có BD/BA=BF/BC

nên DF//AC và DF=AC/2

=>DF=EK

Xét tứ giác DEFK cos

DE//FK

DF=EK

Do đó: DEFK là hình thang cân

18 tháng 12 2021

a: Xét ΔABC  có 

D là tđiểm của AB

E là tđiểm của AC

Do đó: DE là đường trung bình

=>DE//FC và DE=FC

hay DECF là hình bình hành

14 tháng 12 2021

a) Tứ giác AHCE có 

     AD = DC

     HD = DE

=> AHCE là hình bình hành

     H =90°

=> AHCE là hình chữ nhật

b) Vì ∆ABC cân tại A

    =>AB = AC

Mà AC = HE (AHCE là hình chữ nhật)

=> AB = HE

Mình mới làm tới câu b thôi

 

 

a: Xét ΔABC có AD/AB=AE/AC

nên DE//BC và DE=1/2BC

=>DE//BF và DE=BF

=>BDEF là hình bình hành

b: Xét tứ giác AICM có

E là trung điểm chung của AC và IM

góc AIC=90 độ

Do đó; AICM là hình chữ nhật

15 tháng 10 2021

a: Xét ΔABC có

D là trung điểm của BC

K là trung điểm của AC

Do đó: DK là đường trung bình của ΔABC

Suy ra: DK//AB và \(DK=\dfrac{AB}{2}\)

Xét tứ giác ABDK có DK//AB

nên ABDK là hình thang

b: Xét tứ giác ADCH có 

K là trung điểm của AC

K là trung điểm của DH

Do đó: ADCH là hình bình hành

21 tháng 12 2021

Bài 3: 

a: Xét tứ giác AHBF có

E là trung điểm của AB

E là trung điểm của HF

Do đó: AHBF là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBF là hình chữ nhật

22 tháng 9 2019

bn tự kẻ hình nha!

a) xét tg ABC

có: AD = BD, AE = EC

----> DE// BC // BF ( đường trung bình)

----> DE = 1/2.BC = BF

----> BDEF là h.b.h

b) xét tứ giác AHCK

có: HE = EK ; AE = EC
----> AHCK là h.b.h

mà ^AHC = 90o

---> AHCK là h.c.n

----> \(AK\perp AH⋮A\)(1)

cmtt; ta có: AIBH là h.c.n

----> \(AI\perp AH⋮A\)(2)

từ (1);(2) -----> I,A,K thẳng hàng

c) ta có: PQ là đường trung bình của hình thang HFED ( cm HFED là hình thang thì bn tự cm nha)

-----> \(PQ=\frac{DE+HF}{2}\Rightarrow4PQ=2DE+2HF\)(1)

lại có: DE là đường trung bình của tg HKI ( tự cm nha bn)

----> DE = 1/2. IK -----> 2.DE = IK (2)

từ (1),(2) ----> 4PQ = IK + 2HF

22 tháng 9 2019

α π √ Ω ∽ ∞ Δ μ ∈ ∉ ∋ ⊂ ∩ ∪ ∀ ∃ ≤ ≥ ∝ ≈ ⊥ ± ∓ ° ωt + φ λ
Hình tự vẽ.

1) BDEF là hình bình hành.

Xét ΔABC có AD = DB (D là trung điểm), AE = EC (C là trung điểm)

=> DE là đường trung bình của ΔABC.

=> DE//BC, DE = 1/2 BC 

Mặt khác, ta có: BF = 1/2BC (F là trung điểm của BC)

=> DE = BF mà DE//BC (cmt) 

=> BDEF là hình bình hành (đpcm)

2) AHCK là hình chữ nhật. I, A, K thẳng hàng.

Xét tứ giác AHCK có:

AE = EC (E là trung điểm), EH = HK (K đối xứng với H qua E)

=> AHCK là hình bình hành.

Mà ^(AHC) = 90° (GT) 

=> AHCK là hình chữ nhật (đpcm)

=> ^(HAK) = 90° 

Mặt khác, ta xét tương tự tứ giác BHAI có:

AD = BD (D là trung điểm), DI = DH (I đối xứng với H qua D)

=>BHAI là hình bình hành, mà ^(AHB) = 90° 

=> AHBI là hình chữ nhật,

=> ^(IAH) = 90° 

=> ^(IAK) = ^(AIH) + ^(HAK)  = 90° + 90° = 180°

=> I, A, K cùng nằm trên một đường thẳng

Hay I, A, K thẳng hàng.

3) 
Xét ΔIKH có: HD = DI (I đối xứng H qua D), HE = EK (K đối xứng H qua E)
=> DE là đường trung bình của ΔIHK.
=> DE = 1/2IK hay IK = 2DE
Ta có: DE//BC (cmt) => DEFH là hình thang.
Xét hình thang DEFH có: DP = PH (P là trung điểm), QE = QF (Q là trung điểm)
=> PQ là đường trung bình của hình thang DEFH.
=> PQ = (DE + FH)/2 
Quy đồng vế phải, ta được:  PQ = 2DE + 2FH / 4 (IK = 2DE)
=> 4PQ = IK + 2HF (đpcm)

a: Xét tứ giác AHBE có

M là trung điểm của AB

M là trung điểm của HE

Do đó: AHBE là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBE là hình chữ nhật

b: Xét tứ giác ABFC có

H là trung điểm của AF

H là trung điểm của BC

Do đó:ABFC là hình bình hành

mà AB=AC

nên ABFC là hình thoi

9 tháng 1 2022

a) Ta có: E đối xứng với H qua M (gt)

=> M là trung điểm của HE

Xét tứ giác AHBE có:

MA = MB (M là trung điểm của AB)

ME = MH (M là trung điểm của HE)

\(\widehat{AHB}=90^o\)(Vì AH là đường cao vuông góc với BC)

=> AHBE là hcn (đpcm)

b, Vì ABC là tam giác cân

=> AB = AC (1)

Vì F đối xứng với A qua H

=> FB = AB ; FC = AC (2)

Từ (1) và (2) => AB = AC = FC = FB

Xét tứ giác ABFC có: AB = AC = FC = FB (cm trên)

=> ABFC là hình thoi (đpcm)