Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tứ giác AHCE có
AD = DC
HD = DE
=> AHCE là hình bình hành
H =90°
=> AHCE là hình chữ nhật
b) Vì ∆ABC cân tại A
=>AB = AC
Mà AC = HE (AHCE là hình chữ nhật)
=> AB = HE
Mình mới làm tới câu b thôi
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC và DE=BC/2
=>DE//BF và DE=BF
=>BDEF là hình bình hành
b: Xét ΔBAC có BD/BA=BF/BC
nên DF//AC và DF=AC/2
=>DF=EK
Xét tứ giác DEFK cos
DE//FK
DF=EK
Do đó: DEFK là hình thang cân
a: Xét ΔABC có
D là tđiểm của AB
E là tđiểm của AC
Do đó: DE là đường trung bình
=>DE//FC và DE=FC
hay DECF là hình bình hành
bn tự kẻ hình nha!
a) xét tg ABC
có: AD = BD, AE = EC
----> DE// BC // BF ( đường trung bình)
----> DE = 1/2.BC = BF
----> BDEF là h.b.h
b) xét tứ giác AHCK
có: HE = EK ; AE = EC
----> AHCK là h.b.h
mà ^AHC = 90o
---> AHCK là h.c.n
----> \(AK\perp AH⋮A\)(1)
cmtt; ta có: AIBH là h.c.n
----> \(AI\perp AH⋮A\)(2)
từ (1);(2) -----> I,A,K thẳng hàng
c) ta có: PQ là đường trung bình của hình thang HFED ( cm HFED là hình thang thì bn tự cm nha)
-----> \(PQ=\frac{DE+HF}{2}\Rightarrow4PQ=2DE+2HF\)(1)
lại có: DE là đường trung bình của tg HKI ( tự cm nha bn)
----> DE = 1/2. IK -----> 2.DE = IK (2)
từ (1),(2) ----> 4PQ = IK + 2HF
α π √ Ω ∽ ∞ Δ μ ∈ ∉ ∋ ⊂ ∩ ∪ ∀ ∃ ≤ ≥ ∝ ≈ ⊥ ± ∓ ° ωt + φ λ
Hình tự vẽ.
1) BDEF là hình bình hành.
Xét ΔABC có AD = DB (D là trung điểm), AE = EC (C là trung điểm)
=> DE là đường trung bình của ΔABC.
=> DE//BC, DE = 1/2 BC
Mặt khác, ta có: BF = 1/2BC (F là trung điểm của BC)
=> DE = BF mà DE//BC (cmt)
=> BDEF là hình bình hành (đpcm)
2) AHCK là hình chữ nhật. I, A, K thẳng hàng.
Xét tứ giác AHCK có:
AE = EC (E là trung điểm), EH = HK (K đối xứng với H qua E)
=> AHCK là hình bình hành.
Mà ^(AHC) = 90° (GT)
=> AHCK là hình chữ nhật (đpcm)
=> ^(HAK) = 90°
Mặt khác, ta xét tương tự tứ giác BHAI có:
AD = BD (D là trung điểm), DI = DH (I đối xứng với H qua D)
=>BHAI là hình bình hành, mà ^(AHB) = 90°
=> AHBI là hình chữ nhật,
=> ^(IAH) = 90°
=> ^(IAK) = ^(AIH) + ^(HAK) = 90° + 90° = 180°
=> I, A, K cùng nằm trên một đường thẳng
Hay I, A, K thẳng hàng.
3)
Xét ΔIKH có: HD = DI (I đối xứng H qua D), HE = EK (K đối xứng H qua E)
=> DE là đường trung bình của ΔIHK.
=> DE = 1/2IK hay IK = 2DE
Ta có: DE//BC (cmt) => DEFH là hình thang.
Xét hình thang DEFH có: DP = PH (P là trung điểm), QE = QF (Q là trung điểm)
=> PQ là đường trung bình của hình thang DEFH.
=> PQ = (DE + FH)/2
Quy đồng vế phải, ta được: PQ = 2DE + 2FH / 4 (IK = 2DE)
=> 4PQ = IK + 2HF (đpcm)
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC và DE=1/2BC
=>DE//BF và DE=BF
=>BDEF là hình bình hành
b: Xét tứ giác AICM có
E là trung điểm chung của AC và IM
góc AIC=90 độ
Do đó; AICM là hình chữ nhật
a: Xét ΔABC có
D là trung điểm của BC
K là trung điểm của AC
Do đó: DK là đường trung bình của ΔABC
Suy ra: DK//AB và \(DK=\dfrac{AB}{2}\)
Xét tứ giác ABDK có DK//AB
nên ABDK là hình thang
b: Xét tứ giác ADCH có
K là trung điểm của AC
K là trung điểm của DH
Do đó: ADCH là hình bình hành
https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem
Bạn xem tại link này nhé
Học tốt!!!!!!
tự kẻ hình nhé ,ko thì có j ib mk kẻ hộ cx dk ak
b )xét tứ giác hbea có 2 đường chéo he và ba giao tại f
mà f là trung điểm của he ,f là trung điểm của ba
=> hbea là hbh => hb //ae ;hb = ae (1)
xét tứ giác aecg có ge và ca là 2 đường chéo giao tại d
mà d là tủng điểm của ge ;d là trung diểm của ca
=> aecg là hbh => cg = ae ;cg // ae (2)
từ (1) và (2) => hb//cg ;hb=cg => hbcg lag hbh
có ae //cg mà ae vuông góc với bc =. bc vuông góc với cg => bcg = 90 độ mà hbcg lag hbh => hbcg là hcn