K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

ĐK:\(-1\le x\le1\)

\(\sqrt{\frac{1+2x\sqrt{1-x^2}}{2}}=1-2x^2\)

\(\Leftrightarrow\frac{1+2x\sqrt{1-x^2}}{2}=4x^4-4x^2+1\)

\(\Leftrightarrow\frac{2x\sqrt{1-x^2}}{2}=\frac{8x^4-8x^2+1}{2}\)

\(\Leftrightarrow2x\sqrt{1-x^2}=8x^4-8x^2+1\)

\(\Leftrightarrow4x^2\left(1-x^2\right)=64x^8-128x^6+80x^4-16x^2+1\)

\(\Leftrightarrow-\left(2x^2-1\right)^2\left(16x^4-16x^2+1\right)=0\)

Suy ra \(2x^2-1=0\)  hoặc \(16x^4-16x^2+1=0\)

Suy ra \(x=-\frac{1}{\sqrt{2}}\) hoặc \(16\left(x^2-\frac{1}{2}\right)^2-3=0\Rightarrow x=\frac{\sqrt{12}-2}{\sqrt{32}}\) (thỏa)

18 tháng 8 2017

ĐK:\(-1\le x\le1\)

\(\sqrt{\frac{1+2x\sqrt{1-x^2}}{2}}=1-2x^2\)

\(\Leftrightarrow\frac{1+2x\sqrt{1-x^2}}{2}=4x^4-4x^2+1\)

\(\Leftrightarrow\frac{2x\sqrt{1-x^2}}{2}=\frac{8x^4-8x^2+1}{2}\)

\(\Leftrightarrow2x\sqrt{1-x^2}=8x^4-8x^2+1\)

\(\Leftrightarrow4x^2\left(1-x^2\right)=64x^8-128x^6+80x^4-16x^2+1\)

\(\Leftrightarrow-\left(2x^2-1\right)^2\left(16x^4-16x^2+1\right)=0\)

Suy ra \(2x^2-1=0\)  hoặc \(16x^4-16x^2+1=0\)

Suy ra \(x=-\frac{1}{\sqrt{2}}\) hoặc \(16\left(x^2-\frac{1}{2}\right)^2-3=0\Rightarrow x=\frac{\sqrt{12}-2}{\sqrt{32}}\) (thỏa)

2 tháng 7 2017

a) chắc là nhóm lại thui để sau mk làm:v

b)\(\sqrt{\frac{x+7}{x+1}}+8=2x^2+\sqrt{2x-1}\)

Đk: tự lm nhé :v

\(pt\Leftrightarrow\sqrt{\frac{x+7}{x+1}}-\sqrt{3}-\left(\sqrt{2x-1}-\sqrt{3}\right)=2x^2-8\)

\(\Leftrightarrow\frac{\frac{x+7}{x+1}-3}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2x-1-3}{\sqrt{2x-1}+\sqrt{3}}=2\left(x^2-4\right)\)

\(\Leftrightarrow\frac{\frac{-2x+4}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}=2\left(x-2\right)\left(x+2\right)\)

\(\Leftrightarrow\frac{\frac{-2\left(x-2\right)}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}-2\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)\right)=0\)

Dễ thấy: \(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)< 0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

3 tháng 7 2017

ban tra loi nhanh giup mk nhe

8 tháng 10 2020

\(\Leftrightarrow\frac{7x+4}{\sqrt{2\left(x-1\right)\left(x+1\right)}}+\frac{2\sqrt{2x+1}}{\sqrt{2\left(x+1\right)}}=3+\frac{3\sqrt{2x+1}}{\sqrt{x-1}}\)

\(\Leftrightarrow7x+4+2\sqrt{\left(2x+1\right)\left(x-1\right)}=3\sqrt{2\left(x-1\right)\left(x+1\right)}+3\sqrt{2\left(2x+1\right)\left(x+1\right)}\)

 \(\Leftrightarrow\left(7x+4+\sqrt{8x^2-4x-4}\right)^2=\left(\sqrt{18x^2-18}+\sqrt{36^2+54x+18}\right)^2\)

\(\Leftrightarrow\left(7x+4\right)^2+8x^2-4x-4+2\left(7x+4\right)\sqrt{8x^2-4x-4}\)\(=18x^2-18+36x^2+54x+18+2\sqrt{\left(18x^2-18\right)\left(36x^2+54x+18\right)}\)

\(\Leftrightarrow3x^2-2x+12+4\left(7x+4\right)\sqrt{\left(x-1\right)\left(2x+1\right)}=36\left(x+1\right)\sqrt{\left(x-1\right)\left(2x+1\right)}\)

\(\Leftrightarrow3x^2-2x+12=4\left(2x+5\right)\sqrt{\left(x-1\right)\left(2x+1\right)}\)

\(\Leftrightarrow\left(3x^2-2x+12\right)^2=16\left(2x+5\right)^2\left(x-1\right)\left(2x+1\right)\)

\(\Leftrightarrow119x^4+588x^3+1940x^2-672x-544=0\left(1\right)\)

Ta thấy x>1 => Vế trái (1) \(>119.1^4+588.1^3+1940.1^2-672.1-544=1431>0\)

=> pt vô nghiệm.

7 tháng 7 2017

tui làm rồi mà lập lại đi :v

7 tháng 7 2017

Câu hỏi của Nguyễn Thị Bích Ngọc - Toán lớp 9 - Học toán với OnlineMath

30 tháng 8 2018

TỰ LÀM ĐI

30 tháng 7 2017

pro đâu hết rồi giải giúp em với

30 tháng 7 2017

bình phương 2 vế hoặc liên hợp nghiệm bài này đẹp nên ko cần lo 

X=1; X=2