Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) chắc là nhóm lại thui để sau mk làm:v
b)\(\sqrt{\frac{x+7}{x+1}}+8=2x^2+\sqrt{2x-1}\)
Đk: tự lm nhé :v
\(pt\Leftrightarrow\sqrt{\frac{x+7}{x+1}}-\sqrt{3}-\left(\sqrt{2x-1}-\sqrt{3}\right)=2x^2-8\)
\(\Leftrightarrow\frac{\frac{x+7}{x+1}-3}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2x-1-3}{\sqrt{2x-1}+\sqrt{3}}=2\left(x^2-4\right)\)
\(\Leftrightarrow\frac{\frac{-2x+4}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}=2\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow\frac{\frac{-2\left(x-2\right)}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}-2\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)\right)=0\)
Dễ thấy: \(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)< 0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
Câu hỏi của Nguyễn Thị Bích Ngọc - Toán lớp 9 - Học toán với OnlineMath
bình phương 2 vế hoặc liên hợp nghiệm bài này đẹp nên ko cần lo
X=1; X=2
Đặt \(\sqrt[3]{\frac{2x}{x+1}}=a\) thì
PT \(\Leftrightarrow a+\frac{1}{a}=0+2\)
\(\Leftrightarrow a^2-2a+1=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x}{x+1}}=1\)
\(\Leftrightarrow2x=x+1\)
\(\Leftrightarrow x=1\)
ĐK:\(-1\le x\le1\)
\(\sqrt{\frac{1+2x\sqrt{1-x^2}}{2}}=1-2x^2\)
\(\Leftrightarrow\frac{1+2x\sqrt{1-x^2}}{2}=4x^4-4x^2+1\)
\(\Leftrightarrow\frac{2x\sqrt{1-x^2}}{2}=\frac{8x^4-8x^2+1}{2}\)
\(\Leftrightarrow2x\sqrt{1-x^2}=8x^4-8x^2+1\)
\(\Leftrightarrow4x^2\left(1-x^2\right)=64x^8-128x^6+80x^4-16x^2+1\)
\(\Leftrightarrow-\left(2x^2-1\right)^2\left(16x^4-16x^2+1\right)=0\)
Suy ra \(2x^2-1=0\) hoặc \(16x^4-16x^2+1=0\)
Suy ra \(x=-\frac{1}{\sqrt{2}}\) hoặc \(16\left(x^2-\frac{1}{2}\right)^2-3=0\Rightarrow x=\frac{\sqrt{12}-2}{\sqrt{32}}\) (thỏa)
ĐK:\(-1\le x\le1\)
\(\sqrt{\frac{1+2x\sqrt{1-x^2}}{2}}=1-2x^2\)
\(\Leftrightarrow\frac{1+2x\sqrt{1-x^2}}{2}=4x^4-4x^2+1\)
\(\Leftrightarrow\frac{2x\sqrt{1-x^2}}{2}=\frac{8x^4-8x^2+1}{2}\)
\(\Leftrightarrow2x\sqrt{1-x^2}=8x^4-8x^2+1\)
\(\Leftrightarrow4x^2\left(1-x^2\right)=64x^8-128x^6+80x^4-16x^2+1\)
\(\Leftrightarrow-\left(2x^2-1\right)^2\left(16x^4-16x^2+1\right)=0\)
Suy ra \(2x^2-1=0\) hoặc \(16x^4-16x^2+1=0\)
Suy ra \(x=-\frac{1}{\sqrt{2}}\) hoặc \(16\left(x^2-\frac{1}{2}\right)^2-3=0\Rightarrow x=\frac{\sqrt{12}-2}{\sqrt{32}}\) (thỏa)