cho tam giác abc có ab=ac.phân giác am . a)chứng minh rằng tam giác amb=tam giác amc. b)kẻ me vuông góc với ab , mf vuông góc với ac chứng minh me=mf . c)qua b kẻ đường thẳng song song với ac cắt fm tại i chứng minh be=bi . d) chứng minh me=1/2 if
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cậu ghi rõ ràng hơn chút được không ạ . Cậu ghi AB AC ; BE BI mình không hiểu đc
a, Vì Tam giác `ABC` cân tại A `=> AB = AC ;`\(\widehat{B}=\widehat{C}\)
Xét Tam giác `AMB` và Tam giác `AMC` có:
`AM chung`
\(\widehat{B}=\widehat{C}\) `(CMT)`
`MB = MC (g``t)`
`=>` Tam giác `AMB =` Tam giác `AMC (c-g-c)`
b, Vì Tam giác `AMB =` Tam giác `AMC (a)`
`=>` \(\widehat{EAM}=\widehat{FAM}\) (2 góc tương ứng).
Xét Tam giác `EAM` và Tam giác `FAM` có:
AM chung
\(\widehat{EAM}=\widehat{FAM}\) `(CMT)`
\(\widehat{AEM}=\widehat{AFM}=90^0\)
`=>` Tam giác `EAM =` Tam giác `FAM (ch-gn)`
`=> EA = FA` (2 cạnh tương ứng).
c, *câu này mình hơi bí bn ạ:')
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
Do đó: ΔAEM=ΔAFM
=>AE=AF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
a) Xét \(\Delta ABM\) và \(\Delta ACM\) có:
\(AB=AC\) (do \(\Delta ABC\) cân tại \(A\))
\(\widehat{BAM}=\widehat{CAM}\) (do \(AM\) là tia phân giác \(\widehat{A}\))
\(AM\) là cạnh chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.g.c\right)\)
b) Xét \(\Delta AEM\left(\widehat{AEM}=90^o\right)\) và \(\Delta AFM\left(\widehat{AFM}=90^o\right)\) có:
\(\widehat{EAM}=\widehat{FAM}\) (do \(AM\) là tia phân giác \(\widehat{A}\))
\(AM\) là cạnh chung
\(\Rightarrow\Delta AEM=\Delta AFM\left(ch.gn\right)\)
\(\Rightarrow AE=AF\) (\(2\) cạnh tương ứng)
\(\Rightarrow\Delta AEF\) cân tại \(A\)
c) Xét \(\Delta AEF\) cân tại \(A\) có \(AM\) là đường phân giác \(\widehat{A}\)
\(\Rightarrow AM\) cũng là đường trung trực \(\Delta AEF\)
\(\Rightarrow AM\perp EF\)
Tự vẽ hình
a, Tam giác AMB và tam giác AMC
AB = AC ( Tam giáC ABc cân )'
góc BAM = góc CAM ( AM là phân giác)
AM chung
=> Tam giác AMB = tam giác AMC ( c-g-c)
b, Xét tam giá AEM và tam giác AFM cs
góc AEM = góc AFM = 90 độ ( gt )
góc EAM = góc FAM ( AM là phân giác)
AM chung
=>tam giá AEM = tam giác AFM ( ch-gn)
=> AE = AF hay tam giác AEF cân tại A
c, Xét tam giác AEF cân tại A cs AM là tia phân giác đồng thời là đg cao
=> AM vuông góc vs EF
a) Xét tam giác AMB và tam giác AMC ta có:
AM là cạnh chung
AB = AC (gt)
góc BAM = góc CAM ( AM là tia phân giác của góc BAC)
=> tam giác AMB = tam giác AMC ( c - g - c)
b) Xét tam giác AEM vuông tại E và tam giác AFM vuông tại F ta có:
AM là cạnh chung
góc EAM = góc FAM ( AM là tia p/g của góc BAC)
=> tam giác AEM = tam giác AFM ( ch - gn)
=> ME = MF ( 2 cạnh tương ứng)
c) Ta có:
BI // AC (gt)
IF _|_ AC tại F (gt)
=> FI _|_ BI tại I
Ta có:
góc EBM = góc FCM ( tam giác AMB = tam giác AMC)
góc IBM = góc FCM ( 2 góc so le trong và BI // AC)
=> góc EBM = góc IBM
Xét tam giác EBM vuông tại E và tam giác IBM vuông tại I ta có:
BM là cạnh chung
góc EBM = góc IBM (cmt)
=> tam giác EBM = tam giác IBM ( ch - gn)
=> BE = BI ( 2 cạnh tương ứng)
d) Ta có:
ME = MF ( tam giác AEM = tam giác ÀM)
ME = MB ( tam giác EBM = tam giác IBM)
=> MF = MB
=> M là trung điểm của BF ( M thuộc BF)
=> MB = 1/2 IF
Mà ME = MB ( cmt)
Nên ME = 1/2 IF ( đpcm)