K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2017

gọi chiều rộng=x ,chiều dài = x+6 , điều kiện x>0

Bình phương đường chéo = x2 + (x+6)2 ( áp dụng định lý pytagos)

Chu vi = 2(x+x+6)

Bình phương đường chéo gấp 5 lần chu vi nên ta có Phương Trình :

 x2 + (x+6)= 10(x+x+6) giải PT này, ta đc x1=6 ( thỏa mãn đk) ; x2=-2 ( không thỏa mãn Đk) 

Kết luận, chiều dài là 6m, chiều rộng là 12m

28 tháng 5 2017

Câu 1: gọi số gế trong một dãy là x, số dãy gế là y ta có phương trinh :x.y=100 (1)

sau khi thay đổi số gế và số dãy ta có phương trình :(x-1)(y-2)= 100-28 <=> xy-2x-y+2 = 72 <=> 2x+y = 30 <=> y = 30 -2x (2)

thế 2 vào 1 ta có : x(30-2x)=100 <=> \(x^2-15x+50=0\Leftrightarrow\orbr{\begin{cases}x=10\Rightarrow y=10\\x=5\Rightarrow y=20\end{cases}}\)kết luận nghiệm

Câu 2:Gọi số sản phần cần hoàn thành là :x

số sản phẩn dự kiến làm trong 1 ngày là : 0,1x

Khi tăng năng xuất sản phầm ta có phương trình :

\(\left(0,1+5\right)8=x\Leftrightarrow0,8x+40=x\Leftrightarrow0,2x=40\Leftrightarrow x=200\)sản phẩm

Câu 3:gọi chiều rộng là x>0 ,chiều dài là x+6

chu vi của hcn là : 2(x+x+6)=4x+12

độ dài của đường chéo là : \(\sqrt{x^2+\left(x+6\right)^2}=\sqrt{x^2+x^2+12x+36}=\sqrt{2x^2-12x+36}\)

theo giả thiết ta có phương trình:

\(\left(\sqrt{2x^2-12x+36}\right)^2=5\left(4x+12\right)\Leftrightarrow2x^2-12x+36=20x+60\)

\(\Leftrightarrow2x^2-8x-24=0\Leftrightarrow\orbr{\begin{cases}x=6\\x=-2\end{cases}}\)loại x= -2 

vậy chiều rộng là 6, chiều dài là 12

31 tháng 5 2019

MÌNH GIẢI SAI MONG CÁC BẠN THÔNG CẢM VÀ SỬA JUP MIK!!

Gọi số dãy ghế lúc đầu là x (dãy ghế) Đk: x>2

          Số ghế mỗi dãy lúc đầu là 210/x(ghế) 

          dãy ghế lúc sau là x+2(dãy ghế)

          Số ghế mỗi dãy lúc sau là 272/x+2(ghế)

Vì thực tế phải xếp thêm mỗi dãy 2 ghế nên ta có pt:

(210/x)-(272/x+2)+2=0(1)

Giải pt (1) ta có: x1=15(TM),x2=14(TM)

Với số dãy ghế lúc đầu là 15 (dãy) suy ra mỗi dãy có số ghế là 14 (ghế)

Với số dãy ghế lúc đầu là 14 (dãy) suy ra mỗi dãy có số ghế là 15 (ghế)

            

2 tháng 6 2021

Gọi số ghế ở mỗi hàng ban đầu là x (ghế, x > 0)
Gọi số hàng ghế trong phòng ban đầu là y (hàng, y < 50)
Ta có x nhân y = 240
Khi tăng số ghế và số hàng ta có (x + 1)(y + 3)= 315
Ta có hệ phương trình {x nhân y= 240
                                     {y + 3x = 72
Giải hệ phương trình ta có y= 12; x= 20
Vậy số dãy ghế có trong phòng lúc đầu là 12 hàng.

2 tháng 6 2021

12 hàng

9 tháng 5 2018

Gọi số dãy ghế có trong phòng họp lúc đầu là x (x<50)

Lúc đầu mỗi dãy có \(\frac{240}{x}\)ghế

Vì lúc sau có 315 người tham dự nên phải kê thêm 3 dãy, mỗi dãy thêm 1 ghế

=> \(\left(\frac{240}{x}+1\right)\left(x+3\right)=315\Leftrightarrow240+\frac{720}{x}+x+3=315\)

\(\Leftrightarrow x-72+\frac{720}{x}=0\Leftrightarrow\frac{x^2-72x+720}{x}=0\Leftrightarrow x^2-72x+720=0\)

\(\Delta'=\left(-36\right)^2-720=576\)

=> x1= 60 (Loại), x2=12 (thỏa mãn)

Vậy trong phòng họp lúc đầu có 12 dãy ghế. 

2 tháng 2 2019

Giả sử hội trường có a dãy và b là số ghế của mỗi dãy. (a,b∈N∗a,b∈N∗).

Ta có phương trình: ab=500ab=500 và 

⇒(a−3)(b+3)=506⇒ab−3b+3a−9=506⇒3(a−b)=15⇒a−b=5⇒a(a−5)=500⇔a=25⇒(a−3)(b+3)=506⇒ab−3b+3a−9=506⇒3(a−b)=15⇒a−b=5⇒a(a−5)=500⇔a=25

Vậy lúc đầu người ta định xếp 2525 dãy ghế.

11 tháng 2 2022

Gọi số dãy ghế ban đầu của hội trường là a (dãy), số chỗ ở mỗi dãy ban đầu ở hội trường là b (chỗ)

Nếu bớt 2 dãy ghế và mỗi dãy thêm 1 chỗ thì thêm được 8 chỗ: \(\left(a-2\right)\left(b+1\right)=ab+8\Leftrightarrow ab+a-2b-2=ab+8\Leftrightarrow a-2b-10=0\left(1\right)\)

Nếu thêm 3 dãy ghế và mỗi dãy ghế bớt đi 1 chỗ thì giảm 8 chỗ:

\(\left(a+3\right)\left(b-1\right)=ab-8\Leftrightarrow ab-a+3b-3=ab-8\Leftrightarrow-a+3b+5=0\left(2\right)\)

Từ (1) và (2) ta có hệ phương trình: \(\left\{{}\begin{matrix}a-2b=10\\-a+3b=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=20\\b=5\end{matrix}\right.\)

Vậy số dãy ghế ban đầu của hội trường là 20 dãy

23 tháng 5 2018

Gọi số ghế ở mỗi hàng ban đầu là x (ghế, x > 0)
Gọi số hàng ghế trong phòng ban đầu là y (hàng, y < 50)
Ta có x nhân y = 240
Khi tăng số ghế và số hàng ta có (x + 1)(y + 3)= 315
Ta có hệ phương trình {x nhân y= 240
                                     {y + 3x = 72
Giải hệ phương trình ta có y= 12; x= 20
Vậy số dãy ghế có trong phòng lúc đầu là 12 hàng.

13 tháng 12 2017

Câu hỏi tương tự nha bạn

15 tháng 2 2018

Gọi số dãy ghế ban đầu là a [a>0 ,a thuộc N]

=>Số người trên mỗi dãy ghế là : \(\frac{70}{a}\)

Khi bớt đi 2 dãy ghế => Số dãy ghế còn lại là : a-2

Số người trên mỗi dãy ghế lúc đó là : \(\frac{70}{a-2}\)

Theo bài ra ta có : \(\frac{70}{a}+4=\frac{70}{a-2}\)

=> 70[a-2]+4a[a-2]=70a =>35[a-2]+2a[a-2]=35a

=> 35a-70+2a\(^2\)-4a=35a

=> 2a\(^2\)-4a-70=0

=> \(a^2-2a-35=0=>a^2-2a+1-36=0=>\left[a-1^2\right]=36=6^2\). Có 2 trường hợp

Trường hợp 1 : a-1 = -6 => a = - 5 [loại]

Trường hợp 2 : a - 1 = 6 => a = 7

Còn đây bạn làm nốt tiếp

Vậy phòng họp lúc đầu có 7 dãy ghế và 10 người