K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2019

MÌNH GIẢI SAI MONG CÁC BẠN THÔNG CẢM VÀ SỬA JUP MIK!!

Gọi số dãy ghế lúc đầu là x (dãy ghế) Đk: x>2

          Số ghế mỗi dãy lúc đầu là 210/x(ghế) 

          dãy ghế lúc sau là x+2(dãy ghế)

          Số ghế mỗi dãy lúc sau là 272/x+2(ghế)

Vì thực tế phải xếp thêm mỗi dãy 2 ghế nên ta có pt:

(210/x)-(272/x+2)+2=0(1)

Giải pt (1) ta có: x1=15(TM),x2=14(TM)

Với số dãy ghế lúc đầu là 15 (dãy) suy ra mỗi dãy có số ghế là 14 (ghế)

Với số dãy ghế lúc đầu là 14 (dãy) suy ra mỗi dãy có số ghế là 15 (ghế)

            

25 tháng 8 2017

Gọi số dãy ghế trong hội trường là x (x nguyên dương)

Số ghế của mỗi dãy ghế lúc đầu là 150/x

Số dãy ghế lúc sau là x + 2

Số ghế của mỗi dãy ghế lúc sau là

Đáp án: D

16 tháng 1 2019

bài mẫu nè:

gọi số dãy ghế là x, số ghê là y 
theo đb ta có hpt 
(x-2)(y+2)=288 
xy=288 
giải pt tìm đk x=18; y=16 

27 tháng 5 2021

sai r bạn ak phải ra là 2 TH là 12(tm) và -16( k tm)

 

21 tháng 2 2021

Gọi số dãy là x, số ghế là y (x;y thuộc N*)
Vì tổng số ghế là 320 nên:
xy = 320
=> y = 320/x (1)
Nếu số dãy ghế tăng tăng thêm 1 và số ghế mỗi dãy tăng thêm 2 thì trong phòng có 374 ghế nên ta có:
(x+1) (y+2) - xy = 374 - 320
=> 2x + y + 2 + xy -xy = 54
=>2x + y = 52 (2)
Thay (1) vào (2) ta có:
2x + 320/x =52
<=> 2x2x2 +320 = 52x
<=> x2x2 + 160 = 26x
<=> x2x2 - 26x +160 =0
<=> x2x2 - 10x - 16x + 160 = 0
<=> (x-16) * (x-10) = 0
<=> x = 16 hoặc x=10

=> y= 320/16 = 20 hoặc y = 320/10 =32
Vậy
TH1: Phòng họp có 16 dãy, mỗi dãy 20 chỗ
TH2: Phòng họp có 10 dãy, mỗi dãy 32 chỗ

21 tháng 2 2021

3 con giáp là con trâu

23 tháng 5 2018

Gọi số ghế ở mỗi hàng ban đầu là x (ghế, x > 0)
Gọi số hàng ghế trong phòng ban đầu là y (hàng, y < 50)
Ta có x nhân y = 240
Khi tăng số ghế và số hàng ta có (x + 1)(y + 3)= 315
Ta có hệ phương trình {x nhân y= 240
                                     {y + 3x = 72
Giải hệ phương trình ta có y= 12; x= 20
Vậy số dãy ghế có trong phòng lúc đầu là 12 hàng.

11 tháng 2 2022

Gọi số dãy ghế ban đầu của hội trường là a (dãy), số chỗ ở mỗi dãy ban đầu ở hội trường là b (chỗ)

Nếu bớt 2 dãy ghế và mỗi dãy thêm 1 chỗ thì thêm được 8 chỗ: \(\left(a-2\right)\left(b+1\right)=ab+8\Leftrightarrow ab+a-2b-2=ab+8\Leftrightarrow a-2b-10=0\left(1\right)\)

Nếu thêm 3 dãy ghế và mỗi dãy ghế bớt đi 1 chỗ thì giảm 8 chỗ:

\(\left(a+3\right)\left(b-1\right)=ab-8\Leftrightarrow ab-a+3b-3=ab-8\Leftrightarrow-a+3b+5=0\left(2\right)\)

Từ (1) và (2) ta có hệ phương trình: \(\left\{{}\begin{matrix}a-2b=10\\-a+3b=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=20\\b=5\end{matrix}\right.\)

Vậy số dãy ghế ban đầu của hội trường là 20 dãy