cho tam giác abc vuông tại a. Kẻ tia phân giác be của góc B. Kẻ eh vuông góc với bc. Các đường thẳng eh và ab cắt nhau tại k. CM:
a) Tam giác abe = Tam giác hbe
b) AE < EC
c) Góc AEK = 2ABE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo
a) Xét tam giác vuông ABE và tam giác vuông HBE (^BAE = ^BHE = 90o)
BE chung
^ABE = ^HBE (BE là phân giác ^ABC)
=> tam giác vuông ABE = tam giác vuông HBE (ch - gn)
b) Ta có: AE = HE (tam giác vuông ABE = tam giác vuông HBE)
=> E thuộc đường trung trực của AH (1)
Ta có: AB = HB (tam giác vuông ABE = tam giác vuông HBE)
=> B thuộc đường trung trực của AH (2)
Từ (1) và (2) => BE là đường trung trực của AH (đpcm)
c) Ta có: ^BEK = ^BEA + ^AEK
^BEC = ^BEH + ^HEC
Mà ^BEA = ^BEH (tam giác vuông ABE = tam giác vuông HBE)
^AEK = ^HEC (2 góc đối đỉnh)
=> ^BEK = ^BEC
Xét tam giác BEK và tam giác BEC:
^BEK = ^BEC (cmt)
^KBE = ^CBE (BE là phân giác ^ABC)
BE chung
=> tam giác BEK = tam giác BEC (g - c - g)
=> EK = EC (cặp cạnh tương ứng)
a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABE=ΔHBE(cạnh huyền-góc nhọn)
a) Xét tam giác vuông ABE và tam giác vuông HBE có:
EB là cạnh chung; góc ABE=góc HBE (do BE là tia phân giác góc ABC)
=>tam giác vuông ABE=tam giác vuông HBE (cạnh huyền-góc nhọn)
b) Trong tam giác vuông cạnh huyền là cạnh lớn nhất => Trong tam giác vuông HEC cạnh EC lớn nhất
=>HE<EC mà AE=HE (do \(\Delta ABE=\Delta HBE\) mà AE và HE là 2 cạnh tương ứng)
=>AE<EC
c) Trong tam giác vuông, 2 góc nhọn phụ nhau => góc ABC+góc ACB=90o; góc HCE+góc HEC=90o
=>góc ABC+góc ACB=góc HCE+góc HEC => góc ABC=góc HEC
mà góc HEC=góc AEK (2 góc đối đỉnh) => góc ABC=góc AEK
Mặt khác góc ABE=góc EBC (do \(\Delta ABE=\Delta HBE\) mà AE và HE là 2 góc tương ứng)
=>góc ABC=góc ABE+góc EBC=\(2.\widehat{ABE}\) => góc AEK=\(2.\widehat{ABE}\)