Cho a,b là các số tự nhiên thoả mãn 2a^2+a=3b^2+b
C/minh a-b;2a+2b+1 là các số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Ta có: \(2a^2+a=3b^2+b\Rightarrow2a^2+a-3b^2-b=0\Rightarrow3\left(a^2-b^2\right)+\left(a-b\right)=a^2\)
\(\Rightarrow3\left(a-b\right)\left(a+b\right)+\left(a-b\right)=a^2\Rightarrow\left(a-b\right)\left(3a+3b+1\right)=a^2\)
Gọi \(ƯCLN\)\(\left(a-b;3a+3b+1\right)=d\)
=> \(a-b⋮d;3a+3b+1⋮d\Rightarrow\left(a-b\right)\left(3a+3b+1\right)⋮d^2\Rightarrow a^2⋮d^2\Rightarrow a⋮d\Rightarrow6a⋮d\left(1\right)\)
Mà ta lại có: \(3\left(a-b\right)+\left(3a+3b+1\right)⋮d\Rightarrow6a +1⋮d\left(2\right)\)
Từ 1 và 2 => \(d=1\) => \(a-b\) và \(3a+3b+1\) là 2 số nguyên tố cùng nhau.
Và đồng thời \(3a+3b+1>a-b\Rightarrow\begin{cases}3a+3b+1=a^2\\a-b=1^2\end{cases}\)
Vậy \(3a+3b+1\) và \(a-b\) đều là các số chính phương.
Câu 2:
Ta có: \(6x+5y+18=2xy\Rightarrow5y+18=2xy-6x=2x\left(y-3\right)\Rightarrow2x=\frac{5y+18}{y-3}=\frac{5\left(y-3\right)+33}{y-3}=5+\frac{33}{y-3}\)
Do \(x;y\in Z\Rightarrow\)\(\frac{33}{y-3}\in Z\Rightarrow33⋮y-3\Rightarrow y-3\inƯ\left(33\right)=\left\{\pm1;\pm3;\pm11;\pm33\right\}\)
Ta có bảng sau:
y-3 | 1 | -1 | 3 | -3 | 11 | -11 | 33 | -33 |
2x-5 | 33 | -33 | 11 | -11 | 3 | -3 | 1 | -1 |
2x | 38 | -28 | 16 | -6 | 8 | 2 | 6 | 4 |
x | 19 | -14 | 8 | -3 | 4 | 1 | 3 | 2 |
y | 4 | 2 | 6 | 0 | 14 | -9 | 36 | -30 |
Vậy \(\left(x;y\right)=\left(19;4\right);\left(-14;2\right);\left(8;6\right);\left(-3;0\right);\left(4;14\right);\left(1;-9\right);\left(3;36\right);\left(2;-30\right)\)
https://olm.vn/hoi-dap/detail/92192540983.html
Câu hỏi của La Văn Lết - Toán lớp 8
Bạn tham khảo ở đây nhé
Câu hỏi của La Văn Lết - Toán lớp 8 - Học toán với OnlineMath
Em thma khảo bài làm tại link này nhé!
Áp dụng Bđt Bunhiacopski ta có:
\(\left(2a^2+3b^2\right)\left(2+3\right)\ge\left(2a+3b\right)^2=5^2=25\)
\(\Rightarrow5\left(2a^2+3b^2\right)\ge25\)
\(\Rightarrow2a^2+3b^2\ge5\)(Đpcm)
Dấu = khi a=b=1
Ta có
\(a=2,5-1,5b\)
Thế vào ta được BĐT ta được
2b2 - 2b + 1 > 0
<=> (b - 1)2 + b2 > 0 (đúng)
Vậy BĐT là đúng
2a2 + a = 3b2 + b => 2a2 - 2b2 + a - b = b2 => 2.(a - b).(a + b) + (a - b) = b2
=> (a - b). (2a + 2b + 1) = b2 (1)
Gọi d = ƯCLN (a-b; 2a + 2b + 1)
=> a - b chia hết cho d và 2a + 2b + 1 chia hết cho d
=> b2 = (a - b). (2a + 2b + 1) chia hết cho d2
=> b chia hết cho d
Lại có 2(a - b) - (2a + 2b + 1) chia hết cho d => -4b - 1 chia hết cho d
=> 1 chia hết cho d => d =1 => a - b và 2a + 2b + 1 nguyên tố cùng nhau (2)
(1)(2) => a- b và 2a + 2b + 1 đều là số chính phương
có rùi nè, 4b đó: Cho a+b+c=0.
Tính: 1/(b^2+c^2-a^2)+1/(a^2+c^2-b^2)+1/(a^2+b^2-c^2). đó bài này đó
Ta có: 2a+3b là số hữu tỉ
=> 5(2a+3b)=10a+15b là số hữu tỉ
5a-4b là số hữu tỉ
=> 2(5a-4b)=10a -8b là số hữu tỉ
=> (10a+15b)-(10a-8b)=10a+15b-10a+8b=23b
=> b là số hữu tỉ
=> 3b là số hữu tỉ
=> (2a+3b)-3b =2a là số hữu tỉ
=> a là số hữu tỉ
Ta có: \(2a^2+a=3b^2+b\Rightarrow2a^2-2b^2+a-b=b^2\)
\(\Rightarrow2\left(a-b\right)\left(a+b\right)+\left(a-b\right)=b^2\)
\(\Rightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\left(1\right)\)
Đặt \(ƯCLN\left(a-b;2a+2b+1\right)=d\) suy ra:
\(\hept{\begin{cases}\left(a-b\right)⋮d\\2a+2b+1⋮d\end{cases}}\) \(\Rightarrow b^2=\left(a-b\right)\left(2a+2b+1\right)⋮d^2\)
\(\Rightarrow b⋮d\). Lại có:
\(2\left(a-b\right)-\left(2a+2b+1\right)⋮d\Rightarrow-4b-1⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Leftrightarrow a-b\) và \(2a+2b+1\) là hai số nguyên tố cùng nhau \(\left(2\right)\)
Kết hợp \(\left(1\right)\) và \(\left(2\right)\) suy ra:
\(a-b\) và \(2a+2b+1\) là các số chính phương (Đpcm)