K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Thang tư duy Bloom được đề xuất lần đầu tiên vào năm 1956 bởi một nhà tâm lý học giáo dục tại Đại học Chicago có tên là Benjamin Bloom. Theo thang này, trình độ tư duy của một người sẽ thể hiện qua những gì mà người đó biết hay cách thức họ vận hành tư duy. Quá trình tư duy bao gồm sáu bậc sắp xếp theo trình tự từ thấp đến cao: Nhớ, Hiểu, Vận dụng, Phân tích, Đánh giá, Sáng tạo.Thang tư duy Bloom...
Đọc tiếp

Thang tư duy Bloom được đề xuất lần đầu tiên vào năm 1956 bởi một nhà tâm lý học giáo dục tại Đại học Chicago có tên là Benjamin Bloom. Theo thang này, trình độ tư duy của một người sẽ thể hiện qua những gì mà người đó biết hay cách thức họ vận hành tư duy. Quá trình tư duy bao gồm sáu bậc sắp xếp theo trình tự từ thấp đến cao: Nhớ, Hiểu, Vận dụng, Phân tích, Đánh giá, Sáng tạo.

loading...

Thang tư duy Bloom được sử dụng phổ biến để đặt ra mục tiêu dạy học và phân loại mức độ các câu hỏi, bài tập trong kiểm tra, đánh giá. Thường chúng ta có 4 mức độ: Nhận biết, Thông hiểu, Vận dụng và Vận dụng cao, bản chất là dựa vào thang trên.
Các em thấy mình đã đạt được đến mức độ nào rồi?
Hãy cố gắng và tiếp tục rèn luyện nhé!

4
30 tháng 3 2023

em thấy mik mới đc ở bậc 3

31 tháng 3 2023

Thật ra là các bạn c2 đã đủ khả năng ở 6 bậc rồi, nhưng mà nó ít hay nhiều thôi í

Giả thuyết Riemann2, 3, 5, 7, …, 1999, …, những số nguyên tố, tức những số chỉ có thể chia hết cho 1 và chính nó, giữ vai trò trung tâm trong số học. Dù sự phân chia các số này dường như không theo một quy tắc nào, nhưng nó liên kết chặt chẽ với một hàm số do thiên tài Thụy Sĩ Leonard Euler đưa ra vào thế kỷ XVIII. Đến năm 1850, Bernard Riemann đưa ra ý tưởng các giá trị không phù hợp với...
Đọc tiếp

Giả thuyết Riemann

2, 3, 5, 7, …, 1999, …, những số nguyên tố, tức những số chỉ có thể chia hết cho 1 và chính nó, giữ vai trò trung tâm trong số học. Dù sự phân chia các số này dường như không theo một quy tắc nào, nhưng nó liên kết chặt chẽ với một hàm số do thiên tài Thụy Sĩ Leonard Euler đưa ra vào thế kỷ XVIII. Đến năm 1850, Bernard Riemann đưa ra ý tưởng các giá trị không phù hợp với hàm số Euler được sắp xếp theo thứ tự.

Giả thuyết của nhà toán học người Đức này chính là một trong 23 vấn đề mà Hilbert đã đưa ra cách đây 100 năm. Giả thuyết trên đã được rất nhiều nhà toán học lao vào giải quyết từ 150 năm nay. Họ đã kiểm tra tính đúng đắn của nó trong 1.500.000.000 giá trị đầu tiên, nhưng … vẫn không sao chứng minh được. “Đối với nhiều nhà toán học, đây là vấn đề quan trọng nhất của toán học cơ bản” – Enrico Bombieri, giáo sư trường Đại học Princeton, cho biết. và theo David Hilbert, đây cũng là một vấn đề quan trọng đặt ra cho nhân loại.

Bernhard Riemann (1826-1866) là nhà toán học Đức. Giả thuyết Riemann do ông đưa ra năm 1850 là một bài toán có vai trò cực kỳ quan trọng đến cả lý thuyết số lẫn toán học hiện đại.

0
20 tháng 6 2021

Rèn luyện cho học sinh kỹ năng thực hiện các thao tác tư duy, các hành động nhận thức phổ biến trong học tập Vật lý là biện pháp thực hiện nhiệm vụ:
Chọn một:
a. trang bị kiến thức cơ bản;
b. phát triển năng lực tư duy;
c. giáo dục kỹ thuật tổng hợp.
d. giáo dục thế giới quan khoa học;

Hẳn là nhiều người trong chúng ta mất nhiều năm trời học qua cấp 1, cấp 2 và cấp 3 để thoát khỏi môn Toán (để rồi lên Đại học lại dính phải Toán Cao Cấp như tôi chả hạn). Các bạn nghĩ bài tập toán giao về nhà sau mỗi tiết học là khoai ư? Vậy thì các bạn hãy nhìn vào bài toán này đây, để giải nó cần tới 3 nhà toán học và 200 terabyte dung lượng chỉ để chứa lời giải, đấy là...
Đọc tiếp

Hẳn là nhiều người trong chúng ta mất nhiều năm trời học qua cấp 1, cấp 2 và cấp 3 để thoát khỏi môn Toán (để rồi lên Đại học lại dính phải Toán Cao Cấp như tôi chả hạn). Các bạn nghĩ bài tập toán giao về nhà sau mỗi tiết học là khoai ư? Vậy thì các bạn hãy nhìn vào bài toán này đây, để giải nó cần tới 3 nhà toán học và 200 terabyte dung lượng chỉ để chứa lời giải, đấy là đã có một siêu máy tính giúp sức rồi đấy nhé!

Bạn cứ tính, 1 terabyte chứa được 337.920 bản Chiến Tranh Và Hòa Bình, bộ tiểu thuyết của Lev Tolstoy, bộ tiểu thuyết dài nhất trong lịch sử loài người, vậy thì 200 terabyte sẽ chứa lượng chữ nhiều khủng khiếp đến nhường nào.

Bài toán này khó đến mức nào mà bài giải lại vĩ đại tới vậy? Đó là một vấn đề toán học xoay quanh định lý Pythagoras (hay chúng ta vẫn biết nó dưới tên định lý Py-ta-go), được đưa ra lần đầu tiên bởi giáo sư toán học Ronald Graham hồi những năm 1980. Có tên là Biến Số Đúng Sai Của Bộ Ba Số Nguyên Dương Pythagoras (Boolean Pythagorean Triples), vấn đề toán học này “khoai” đến mức Graham đã treo giải 100 USD cho bất kì ai giải được (năm 1980 nhé!).

Vấn đề toán học này xoay quanh công thức của định lý Pythagoras: a^2 b^2 = c^2. Trong đó a và b là hai cạnh góc vuông của một tam giác vuông, còn c là cạnh huyền.

 

Công thức của định lý Pythagoras.

Công thức của định lý Pythagoras.

 

Giải thích về tên của vấn đề toán học này:

Bolean là biến có giá trị đúng hoặc sai.

1
18 tháng 8 2017

Còn về Pythagoras Triples, có những bộ số nguyên dương được gọi là bộ ba Pythagoras sẽ luôn đúng khi áp dụng vào công thức của Pythagoras như : 3^2 4^2 = 5^2; 8^2 15^2 = 17^2. Chúng được gọi là Bộ Ba Số Nguyên Dương Pythagoras.

Và bạn hãy tưởng tượng rằng mọi số nguyên dương trong bảng chữ số sẽ được tô màu hoặc đỏ hoặc xanh. Graham đã đưa ra bài toán rằng: liệu có khả thi không khi thực hiện việc tô màu mọi số nguyên hoặc xanh hoặc đỏ, để cho không có Bộ Ba Pythagoras nào có cùng màu. Và 100 USD sẽ được thưởng cho bất cứ người nào giải được bài toán ấy (Chà, với 100 USD thì ta có thể chi trả cho tận 1 cái ổ có dung lượng 1 terabyte).

Vấn đề toán học này khó ở chỗ: một số nguyên dương có thể nằm trong nhiều Bộ Ba Pythagoras khác nhau. Ví dụ như số 5, ta có dãy 3-4-5 là Bộ Ba Pythagoras, nhưng dãy 5-12-13 cũng vậy. Áp dụng điều kiện của Graham, nếu số 5 của dãy đầu tiên tô màu xanh, thì trong dãy thứ hai nó cũng phải là màu xanh, vì thế số 12 và 13 phải mang màu đỏ.

Càng tiến xa hơn với điều kiện mà Graham đề ra, các con số càng lớn và vấn đề bắt đầu nảy sinh. Nếu như số 12 phải mang màu đỏ trong dãy 5-12-13, những dãy số sau này chứa số 12 sẽ bắt buộc mang một màu nhất định.

Các nhà toán học Marijn Heule từ Đại học Texas, Victor Marek từ Đại học Kentucky, và Oliver Kullmann từ Đại học Swansea tại Anh đã cùng nhau giải quyết vấn đề này. Họ đã cài đặt một số phép thử và kĩ thuật tính toán vào trong siêu máy tính Stampede tại Đại học Texas, để cho nó có thể thu hẹp phạm vi “tô màu” xuống còn 102,300 tỷ tỷ khả năng (trăm nghìn tỷ tỷ, từng đó là có tổng cộng 25 số “0” đó các bạn).

Bộ siêu máy tính gồm 800 vi xử lý mạnh mẽ đã phải mất tới 2 ngày để “nhằn” hết đống phép thử kia, và nó chỉ có thể khả thi cho tới số 7.824. Bắt đầu từ 7.825 trở đi là không thể thỏa mãn điều kiện đặt ra của Graham.

Vậy là 3 nhà toán học (kèm một cái siêu máy tính) đã giải quyết được vấn đề toán học đã tồn tại cả thập kỉ này, và cụ Ronald Graham cũng đã giữ lời hứa của mình, thưởng “hậu hĩnh” món tiền 100 USD cho 3 anh.

“Bộ ba nguyên tử” của 3 nhà toán học này đã tạo ra một bản nén 68 gigabyte cho bất kì bạn trẻ nào có một bộ vi xử lý tốt cùng với 30.000 giờ rảnh rỗi để tải về, tái dựng và xác minh vấn đề. Nhưng nếu bạn có 30.000 giờ rảnh thật thì cũng còn một vấn đề khác nữa, con người không thể đọc được những dòng thuật toán đó.

Thực tế, bộ ba đã phải “nhờ” một chương trình máy tính khác để xác minh lại kết quả của họ, và cuối cùng thì 7.824 là con số chính xác. Ronald Graham cũng hài lòng với việc xác minh được con số này.

Nhưng nhiều người cho rằng, con người không đọc nổi kết quả nên nó không đủ thuyết phục. Dù không chứng minh được là nó sai, nhưng việc đó cũng không giải quyết vấn đề đến tận cùng. Tại sao bắt đầu từ số 7.825 trở đi thì việc “tô màu” là bất khả thi? Chúng ta không giải thích được, mà chỉ được dàn siêu máy tính kia cho biết vậy thôi.

Làm sau mà con người có thể hiểu được ý nghĩa của các con số với chúng ta cũng như với cả Vũ trụ nếu như mọi vấn đề toán học được giải quyết bằng máy như vậy. Sự thực là vấn đề này quá khó giải quyết, có lẽ cũng lại phải nhờ một bộ siêu máy tính nào đó vào cuộc thôi.

Πυθαγόρας - Pythagoras📷Thời đạiTriết học tiền SocratesLĩnh vựcTriết học Phương TâyTrường pháiHọc thuyết PythagorasSở thíchTriết lý toán họcÝ tưởng nổi trội-Ảnh hưởng bởi[hiện]Ảnh hưởng tới[hiện]Pythagoras (tiếng Hy Lạp: Πυθαγόρας; sinh khoảng năm 580 đến 572 TCN - mất khoảng năm 500 đến 490 TCN) là một nhà triết học người Hy Lạp và là người sáng lập ra phong trào tín...
Đọc tiếp

Πυθαγόρας - Pythagoras📷Thời đạiTriết học tiền SocratesLĩnh vựcTriết học Phương TâyTrường pháiHọc thuyết PythagorasSở thíchTriết lý toán họcÝ tưởng nổi trội-Ảnh hưởng bởi[hiện]Ảnh hưởng tới[hiện]

Pythagoras (tiếng Hy Lạp: Πυθαγόρας; sinh khoảng năm 580 đến 572 TCN - mất khoảng năm 500 đến 490 TCN) là một nhà triết học người Hy Lạp và là người sáng lập ra phong trào tín ngưỡng có tên học thuyết Pythagoras. Ông thường được biết đến như một nhà khoa học và toán học vĩ đại. Trong tiếng Việt, tên của ông thường được phiên âm từ tiếng Pháp (Pythagore) thành Pi-ta-go.

Pythagoras đã thành công trong việc chứng minh tổng 3 góc của một tam giác bằng 180° và nổi tiếng nhất nhờ định lý toán học mang tên ông. Ông cũng được biết đến là "cha đẻ của số học". Ông đã có nhiều đóng góp quan trọng cho triết học và tín ngưỡngvào cuối thế kỷ 7 TCN. Về cuộc đời và sự nghiệp của ông, có quá nhiều các huyền thoại khiến việc tìm lại sự thật lịch sử không dễ dàng. Pythagoras và các học trò của ông tin rằng mọi sự vật đều liên hệ đến toán học, và mọi sự việc đều có thể tiên đoán trước qua các chu kỳ.

Tiểu sử

📷Pythagoras, người đàn ông ở giữa bức hình với quyển sách, đang dạy nhạc, trong Trường học Athena của Raphael.

Pythagoras sinh tại đảo Samos (Bờ biển phía tây Hy Lạp), ngoài khơi Tiểu Á. Ông là con của Pythais (mẹ ông, người gốc Samos) và Mnesarchus (cha ông, một thương gia từ Týros). Khi đang tuổi thanh niên, ông rời thành phố quê hương tới Crotone phía nam Ý, để trốn tránh chính phủ chuyên chế Polycrates. Theo Iamblichus, Thales, rất ấn tượng trước khả năng của ông, đã khuyên Pythagoras tới Memphis ở Ai Cập học tập với các người tế lễ nổi tiếng tài giỏi tại đó. Có lẽ ông đã học một số nguyên lý hình học, sau này là cảm hứng để ông phát minh ra định lý sau này mang tên ông tại đó.

Mới 16 tuổi, cậu bé Pythagoras đã nổi tiếng về trí thông minh khác thường. Cậu bé theo học nhà toán học nổi tiếng Thales, và chính Thales cũng phải kinh ngạc về tài năng của cậu. Để tìm hiểu nền khoa học của các dân tộc, Pythagoras đã dành nhiều năm đến ấn Độ, Babilon, Ai Cập và đã trở nên uyên bác trong hầu hết các lĩnh vực quan trọng: số học, hình học, thiên văn, địa lý, y học, triết học.

Vào tuổi 50, Pythagoras mới trở về tổ quốc của mình.Ông thành lập một ngôi trường ở miền Nam nước Ý, nhận hàng trăm môn sinh, kể cả phụ nữ, với thời gian học gồm 5 năm gồm 4 bộ môn: hình học, toán học, thiên văn, âm nhạc.Chỉ những học sinh giỏi vào cuối năm 3 mới được chính Pythagoras trực tiếp dạy.Trường phái Pythagoras đã đóng một vai trò quan trọng trong việc phát triển khoa học thời cổ, đặc biệt là về số học và hình học.

Ngay sau khi di cư từ Samos tới Crotone, Pythagoras đã lập ra một tổ chức tôn giáo kín rất giống với (và có lẽ bị ảnh hưởng bởi) sự thờ cúng Orpheus trước đó.

Pythagoras đã tiến hành một cuộc cải tạo đời sống văn hoá ở Crotone, thúc giục các công dân ở đây làm theo đạo đức và hình thành nên một thế giới tinh hoa (elite) xung quanh ông. Trung tâm văn hoá này có các quy định rất chặt chẽ. Ông mở riêng các lớp cho nam sinh và nữ sinh. Những người tham gia tổ chức của Pythagoras tự gọi mình là Mathematikoi. Họ sống trong trường, không được có sở hữu cá nhân và bị yêu cầu phải ăn chay. Các sinh viên khác sống tại các vùng gần đó cũng được ông cho phép tham gia vào lớp học của Pythagoras. Được gọi là Akousmatics, các sinh viên đó được ăn thịt và có đồ sở hữu riêng.

Theo Iamblichus, các môn đồ Pythagoras sống một cuộc sống theo quy định sẵn với các môn học tôn giáo, các bữa ăn tập thể, tập thể dục, đọc và học triết học. Âm nhạc được coi là nhân tố tổ chức chủ chốt của cuộc sống này: các môn đồ cùng nhau hát các bài ca tụng Apollo; họ dùng đàn lyre để chữa bệnh cho tâm hồn và thể xác, ngâm thơ trước và sau khi ngủ dậy để tăng cường trí nhớ.

Lịch sử của Định lý Pythagoras mang tên ông rất phức tạp. Việc Pythagoras đích thân chứng minh định lý này hay không vẫn còn chưa chắc chắn, vì trong thế giới cổ đại khám phá của học trò cũng thường được gán với cái tên của thầy. Văn bản đầu tiên đề cập tới định lý này có kèm tên ông xuất hiện năm thế kỷ sau khi Pythagoras qua đời, trong các văn bản của Cicero và Plutarch. Mọi người tin rằng nhà toán học Ấn Độ Baudhayana đã tìm ra Định lý Pythagoras vào khoảng năm 800 TCN, 300 năm trước Pythagoras.

Ngày nay, Pythagoras được kính trọng với tư cách là người đề xướng ra Ahlu l-Tawhīd, hay đức tin Druze, cùng với Platon.

Nguồn: Nguyễn Anh

Các môn đồ của Pythagoras

Bài chính: Học thuyết Pythagoras

Trong tiếng Anh, môn đồ của Pythagoras thường được gọi là "Pythagorean". Đa số họ được nhớ đến với tư cách là các nhà triết học toán và họ đã để lại thành tựu trên sự hình thành các tiên đề hình học, sau hai trăm năm phát triển đã được Euclid viết ra trong cuốn Elements. Các môn đồ Pythagoras đã tuân thủ một quy định về sự im lặng được gọi là echemythia, hành động vi phạm vào quy định này sẽ dẫn tới án tử hình. Trong cuốn tiểu sử Pythagoras (được viết 7 thế kỷ sau thời ông) Porphyry đã bình luận rằng sự im lặng này "không phải hình thức thông thường." Các môn đồ Pythagoras được chia vào nhóm trong được gọi là mathematikoi (nhà toán học), nhóm ngoài là akousmatikoi (người nghe). Porphyry đã viết "các mathematikoi học chi tiết và tỉ mỉ hơn về sự hiểu biết, akousmatikoi là những người chỉ được nghe giảng về các tiêu đề rút gọn trong các tác phẩm (của Pythagoras), và không được giảng giải rõ thêm". Theo Iamblichus, akousmatikoi là các môn đồ thông thường được nghe các bài giảng do Pythagoras đọc từ sau một bức màn. Họ không được phép nhìn thấy Pythagoras và không được dạy những bí mật bên trong của sự thờ phụng. Thay vào đó, họ được truyền dạy các quy luật đối xử và đạo đức dưới hình thức khó hiểu, những câu nói ngắn gọn ẩn giấu ý nghĩa bên trong. Akousmatikoi coi mathematikoi là các môn đồ Pythagoras thật sự, nhưng mathematikoi lại không coi akousmatikoi như vậy. Sau khi lính của Cylon, một môn đồ bất mãn, giết Pythagoras và một số mathematikoi, hai nhóm này hoàn toàn chia rẽ với nhau, với vợ Pythagoras là Theano cùng hai cô con gái lãnh đạo nhóm mathematikoi.

Theano, con gái của Brontinus, là một nhà toán học. Bà được cho là người đã viết các tác phẩm về toán học, vật lý, y học và tâm lý học trẻ em, dù không tác phẩm nào còn tồn tại đến ngày nay. Tác phẩm quan trọng nhất của bà được cho là về các nguyên lý của sự trung dung. Ở thời đó,phụ nữ thường bị coi là vật sở hữu và chỉ đóng vai trò người nội trợ, Pythagoras đã cho phép phụ nữ có những hoạt động ngang quyền với nam giới trong tổ chức của ông.

Tổ chức của Pythagoras gắn liền với những điều ngăn cấm kỳ lạ và mê tín, như không được bước qua một thanh giằng, không ăn các loại đậu (vì bên trong đậu "có chứa" phôi thai người). Các quy định đó có lẽ tương tự với những điều mê tín thời sơ khai, giống như "đi dưới một cái thang sẽ bị đen đủi," những điều mê tín không mang lại lợi ích nhưng cũng không nên bỏ qua. Tính ngữ mang tính lăng nhục mystikos logos (bài nói thần bí) đã từng hay được dùng để miêu tả các công việc của Pythagoras với mục đích làm lăng mạ ông. Hàm ý ở đây, akousmata có nghĩa là "các quy định," vì thế những điều cấm kỵ mê tin ban đầu được áp dụng cho những akousmatikoi, và nhiều quy định có lẽ đã được tạo ra thêm sau khi Pythagoras đã chết và cũng không liên quan gì đến các mathematikoi (được cho là những người duy nhất gìn giữ truyền thống của Pythagoras). Mathematikoi chú trọng nhiều hơn tới sự hiểu tường tận vấn đề hơn akousmatikoi, thậm chí tới mức không cần thiết như ở một số quy định và các nghi lễ tâm linh. Đối với mathematikoi, trở thành môn đồ của Pythagoras là vấn đề về bản chất thiên phú và sự thấu hiểu bên trong.

Các loại đậu, màu đen và trắng, là phương tiện sử dụng trong các cuộc biểu quyết. Câu châm ngôn "abstain from beans" (tránh xa đậu) trong tiếng Anh có lẽ đơn giản chỉ sự hô hào không tham gia bỏ phiếu. Nếu điều này đúng, có lẽ nó là một ví dụ tuyệt vời để biết các ý tưởng đã có thể bị bóp méo như thế nào khi truyền từ người này qua người khác và không đặt trong đúng hoàn cảnh. Cũng có một cách khác để tránh akousmata - bằng cách nói bóng gió. Chúng ta có một số ví dụ như vậy, Aristotle đã giải thích cho họ: "đừng bước qua cái cân", nghĩa là không thèm muốn; "đừng cời lửa bằng thanh gươm", nghĩa là không nên bực tức với những lời lẽ châm chích của một kẻ đang nóng giận; "đừng ăn tim", nghĩa là không nên bực mình với nỗi đau khổ, vân vân. Chúng ta có bằng chứng về sự ngụ ý kiểu này đối với các môn đồ Pythagoras ít nhất ở thời kỳ đầu thế kỷ thứ 5 trước Công nguyên. Nó cho thấy rằng những câu nói kỳ lạ rất khó hiểu đối với người mới gia nhập.

Trường phái Pythagoras cũng nghiên cứu âm nhạc.Họ giải thích rằng độ cao của âm thanh tỉ lệ nghịch với chiều dài của dây và ba sợi dây đàn có chiều dài tỉ lệ với 6,4,3 sẽ cho âm êm tai.

Các môn đồ Pythagoras cũng nổi tiếng vì lý thuyết luân hồi của tâm hồn, và chính họ cũng cho rằng các con số tạo nên trạng thái thực của mọi vật. Họ tiến hành các nghi lễ nhằm tự làm trong sạch và tuân theo nhiều quy định sống ngày càng khắt khe mà họ cho rằng sẽ khiến tâm hồn họ tiến lên mức cao hơn gần với thượng đế. Đa số những quy định thần bí liên quan tới tâm hồn đó dường như liên quan chặt chẽ tới truyền thống Orpheus. Những tín đồ Orpheus ủng hộ việc thực hiện các lễ nghi gột rửa tội lỗi và lễ nghi để đi xuống địa ngục. Pythagoras có liên hệ chặt chẽ với Pherecydes xứ Syros, nhà bình luận thời cổ được cho là người Hy Lạp đầu tiên truyền dạy thuyết luân hồi tâm hồn. Các nhà bình luận thời cổ đồng ý rằng Pherecydes là vị thầy có ảnh hưởng lớn nhất tới Pythagoras. Pherecydes đã trình bày tư tưởng của mình về tâm hồn thông qua các thuật ngữ về một pentemychos("năm góc" hay "năm hốc ẩn giấu") - nguồn gốc có lẽ thích hợp nhất giải thích việc các môn đồ Pythagoras sử dụng ngôi sao năm cánh làm biểu tượng để nhận ra nhau giữa họ và biểu tượng của sức mạnh bên trong (ugieia).

Trường phái Pytago khảo sát hình vuông có cạnh dài một đơn vị và nhận ra không thể biểu thị độ dài đường chéo của nó bằng một số nguyên hay phân số, tức là tồn tại các đoạn thẳng không biểu thị được theo đoạn thẳng đơn vị bởi một số hữu tỉ.Sư kiện naỳ được so sánh với việc tìm ra hình Ơ-clit ở thế kỉ XIX.

Cũng chính các môn đồ Pythagoras đã khám phá ra rằng mối quan hệ giữa các nốt nhạc có thể được thể hiện bằng các tỷ lệ số của một tổng thể nhỏ số (xem Pythagorean tuning). Các môn đồ Pythagoras trình bày tỉ mỉ một lý thuyết về các con số, ý nghĩa thực sự của nó hiện vẫn gây tranh cãi giữa các học giả.Họ cho rằng số 1 là nguồn gốc của mọi số, biểu thị cho lẽ phải; số lẻ là "số nam", số chẵn là "số nữ";số 5 biểu thị việc xây dựng gia đình; số 7 mang tính chất của sức khỏe; số 8 biểu thị cho tình yêu... Trước lúc nghe giảng,các học trò của Pytago đọc những câu kinh như:"Hãy ban ơn cho chúng tôi, hỡi những con số thần linh đã sáng tạo ra loài người!". Pytago còn nghiên cứu cả kiến trúc và thiên văn. Ông cho rằng trái đất có hình cầu và nằm ở tâm vũ trụ.

Các tác phẩm

Không văn bản nào của Pythagoras còn tồn tại tới ngày nay, dù các tác phẩm giả mạo tên ông - hiện vẫn còn vài cuốn - đã thực sự được lưu hành vào thời xưa. Những nhà phê bình thời cổ như Aristotle và Aristoxenus đã tỏ ý nghi ngờ các tác phẩm đó. Những môn đồ Pythagoras thường trích dẫn các học thuyết của thầy với câu dẫn autos ephe (chính thầy nói) - nhấn mạnh đa số bài dạy của ông đều ở dạng truyền khẩu. Pythagoras xuất hiện với tư cách một nhân vật trong tác phẩm Metamorphoses của Ovid, trong đó Ovid đã để Pythagoras được trình bày các quan điểm của ông.

Ảnh hưởng tới Platon

Pythagoras hay ở nghĩa rộng hơn là các môn đồ của Pythagoras được cho là đã gây ảnh hưởng mạnh tới Platon. Theo R. M. Hare, ảnh hưởng của ông xuất hiện ở ba điểm:

Tác phẩm Cộng hòa của Platon có thể liên quan tới ý tưởng "một cộng đồng được tổ chức chặt chẽ của những nhà tư tưởng có cùng chí hướng", giống như một ý tưởng đã được Pythagoras đưa ra tại Croton.

có bằng chứng cho thấy có thể Platon đã lấy ý tưởng của Pythagoras rằng toán học, và nói chung, tư tưởng trừu tượng là một nguồn tin cậy cho sự tư duy triết học cũng như "cho các luận đề quan trọng trong khoa học và đạo đức".

Platon và Pythagoras cùng có chung ý tưởng "tiếp cận một cách thần bí tới tâm hồn và vị trí của nó trong thế giới vật chất". Có lẽ cả hai người cùng bị ảnh hưởng từ truyền thống Orpheus[1].

Sự điều hòa của Platon rõ ràng bị ảnh hưởng từ Archytas, một môn đồ Pythagoras thật sự ở thế hệ thứ ba, người có nhiều đóng góp quan trọng vào hình học, phản ánh trong Tập VIII trong sách Elements của Euclid.

Các câu trích dẫn nói về Pythagoras

"Ông ta được khâm phục đến nỗi các môn đồ của ông thường được gọi là 'những nhà tiên tri tuyên truyền ý Chúa'...", Diogenes Laertius, Lives of Eminent Philosophers, VIII.14, Pythagoras; Loeb Classical Library No. 185, p. 333

"...the Metapontines named his house the Temple of Demeter and his porch the Museum, so we learn from Favorinus in his Miscellaneous History.", Diogenes Laertius, Lives of Eminent Philosophers, VIII.15, Pythagoras; Loeb Classical Library No. 185, p. 335

"Hoa quả của đất chỉ nở một hai lần trong năm, còn hoa quả của tình bạn thì nở suốt 4 mùa"

"Trong xã giao đừng đổi bạn thành thù mà hãy đổi thù thành bạn."

"Hãy tập chiến thắng sự đói khát, sự lười biếng và sự giận dữ"

" Đừng thấy cái bóng to của mình trên vách tường mà tưởng mình vĩ đại"

" Hãy chỉ làm những việc mà sau đó mình không hối hận và bạn mình không phiền lòng."

" Chưa nhắm mắt ngủ nếu chưa soát lại tất cả những việc đã làm trong ngày."

" Chớ coi thường sức khỏe. hãy cung cấp cho cơ thể đúng lúc những đồ ăn, thức uống và sự tập luyện cần thiết."

" Hãy sống giản dị, không xa hoa."

" Hãy tôn trọng cha mẹ của bạn"

3
26 tháng 1 2019

hay đấy bn ơi

4 tháng 3 2019

thank bn nhìu

20 tháng 6 2021

Tạo nhu cầu hứng thú, kích thích tình tò mò, ham hiểu biết của học bằng xây dựng và sử dụng tình huống có vấn đề là biện pháp dạy học thực hiện nhiệm vụ
Chọn một:
a. giáo dục kỹ thuật tổng hợp.
b. phát triển năng lực tư duy;
c. giáo dục thế giới quan khoa học;
d. trang bị kiến thức cơ bản;

Giả thuyết PoincaréHenri Poincare (1854-1912), là nhà vật lý học và toán học người Pháp,một trong những nhà toán học lớn nhất thế kỷ 19. Giả thuyết Poincarédo ông đưa ra năm 1904 là một trong những thách thức lớn nhất của toán học thế kỷ 20Lấy một quả bóng (hoặc một vật hình cầu), vẽ trên đó một đường cong khép kín không có điểm cắt nhau, sau đó cắt quả bóng theo đường vừa vẽ:...
Đọc tiếp
  1. Giả thuyết Poincaré
    Henri Poincare (1854-1912), là nhà vật lý học và toán học người Pháp,
    một trong những nhà toán học lớn nhất thế kỷ 19. Giả thuyết Poincarédo ông đưa ra năm 1904 là một trong những thách thức lớn nhất của toán học thế kỷ 20

    Lấy một quả bóng (hoặc một vật hình cầu), vẽ trên đó một đường cong khép kín không có điểm cắt nhau, sau đó cắt quả bóng theo đường vừa vẽ: bạn sẽ nhận được hai mảnh bóng vỡ. Làm lại như vậy với một cái phao (hay một vật hình xuyến): lần này bạn không được hai mảnh phao vỡ mà chỉ được có một.
    Trong hình học topo, người ta gọi quả bóng đối lập với cái phao, là một về mặt liên thông đơn giản. Một điều rất dễ chứng minh là trong không gian 3 chiều, mọi bề mặt liên thông đơn giản hữu hạn và không có biên đều là bề mặt của một vật hình cầu.
    Vào năm 1904, nhà toán học Pháp Henri Poincaré đặt ra câu hỏi: Liệu tính chất này của các vật hình cầu có còn đúng trong không gian bốn chiều. Điều kỳ lạ là các nhà hình học topo đã chứng minh được rằng điều này đúng trong những không gian lớn hơn hoặc bằng 5 chiều, nhưng chưa ai chứng minh được tính chất này vẫn đúng trong không gian bốn chiều.
  2. Vấn đề P chống lại NP
    Với quyển từ điển trong tay, liệu bạn thấy tra nghĩa của từ “thằn lắn” dễ hơn, hay tìm một từ phổ thông để diễn tả “loài bò sát có bốn chân, da có vảy ánh kim, thường ở bờ bụi” dễ hơn? Câu trả lời hầu như chắc chắn là tra nghĩa thì dễ hơn tìm từ.
    Những các nhà toán học lại không chắc chắn như thế. Nhà toán học Canada Stephen Cook là người đầu tiên, vào năm 1971, đặt ra câu hỏi này một cách “toán học”. Sử dụng ngôn ngữ lôgic của tin học, ông đã định nghĩa một cách chính xác tập hợp những vấn đề mà người ta thẩm tra kết quả dễ hơn (gọi là tập hợp P), và tập hợp những vấn đề mà người ta dễ tìm ra hơn (gọi là tập hợp NP). Liệu hai tập hợp này có trùng nhau không? Các nhà lôgic học khẳng định P # NP. Như mọi người, họ tin rằng có những vấn đề rất khó tìm ra lời giải, nhưng lại dễ thẩm tra kết quả. Nó giống như việc tìm ra số chia của 13717421 là việc rất phức tạp, nhưng rất dễ kiểm tra rằng 3607 x 3808 = 13717421. Đó chính là nền tảng của phần lớn các loại mật mã: rất khó giải mã, nhưng lại dễ kiểm tra mã có đúng không. Tuy nhiên, cũng lại chưa có ai chứng minh được điều đó.
    “Nếu P=NP, mọi giả thuyết của chúng ta đến nay là sai” – Stephen Cook báo trước. “Một mặt, điều này sẽ giải quyết được rất nhiều vấn đề tin học ứng dụng trong công nghiệp; nhưng mặt khác lại sẽ phá hủy sự bảo mật của toàn bộ các giao dịch tài chính thực hiện qua Internet”. Mọi ngân hàng đều hoảng sợ trước vấn đề lôgic nhỏ bé và cơ bản này!
  3. Các phương trình của Yang-Mills
    Các nhà toán học luôn chậm chân hơn các nhà vật lý. Nếu như từ lâu, các nhà vật lý đã sử dụng các phương trình của Yang-Mills trong các máy gia tốc hạt trên toàn thế giới, thì các ông bạn toán học của họ vẫn không thể xác định chính xác số nghiệm của các phương trình này.
    Được xác lập vào những năm 50 bởi các nhà vật lý Mỹ Chen Nin Yang và Robert Mills, các phương trình này đã biểu diễn mối quan hệ mật thiết giữa vật lý về hạt cơ bản với hình học của các không gian sợi. Nó cũng cho thấy sự thống nhất của hình học với phần trung tâm của thể giới lượng tử, gồm tương tác tác yếu, mạnh và tương tác điện từ. Nhưng hiện nay, mới chỉ có các nhà vật lý sử dụng chúng…
  4. Giả thuyết Hodge
    Euclide sẽ không thể hiểu được gì về hình học hiện đại. Trong thế kỷ XX, các đường thẳng và đường tròn đã bị thay thế bởi các khái niệm đại số, khái quát và hiệu quả hơn. Khoa học của các hình khối và không gian đang dần dần đi tới hình học của “tính đồng đẳng”. Chúng ta đã có những tiến bộ đáng kinh ngạc trong việc phân loại các thực thể toán học, nhưng việc mở rộng các khái niệm đã dẫn đến hậu quả là bản chất hình học dần dần biến mất trong toán học. Vào năm 1950, nhà toán học người Anh William Hodge cho rằng trong một số dạng không gian, các thành phần của tính đồng đẳng sẽ tìm lại bản chất hình học của chúng…
  5. Giả thuyết Riemann
    2, 3, 5, 7, …, 1999, …, những số nguyên tố, tức những số chỉ có thể chia hết cho 1 và chính nó, giữ vai trò trung tâm trong số học. Dù sự phân chia các số này dường như không theo một quy tắc nào, nhưng nó liên kết chặt chẽ với một hàm số do thiên tài Thụy Sĩ Leonard Euler đưa ra vào thế kỷ XVIII. Đến năm 1850, Bernard Riemann đưa ra ý tưởng các giá trị không phù hợp với hàm số Euler được sắp xếp theo thứ tự. Giả thuyết của nhà toán học người Đức này chính là một trong 23 vấn đề mà Hilbert đã đưa ra cách đây 100 năm. Giả thuyết trên đã được rất nhiều nhà toán học lao vào giải quyết từ 150 năm nay. Họ đã kiểm tra tính đúng đắn của nó trong 1.500.000.000 giá trị đầu tiên, nhưng … vẫn không sao chứng minh được. “Đối với nhiều nhà toán học, đây là vấn đề quan trọng nhất của toán học cơ bản” – Enrico Bombieri, giáo sư trường Đại học Princeton, cho biết. Và theoDavid Hilbert, đây cũng là một vấn đề quan trọng đặt ra cho nhân loại. Bernhard Riemann (1826-1866) là nhà toán học Đức.
    Giả thuyết Riemann do ông đưa ra năm 1850 là một bài toán có vai trò cực kỳ quan trọng đến cả lý thuyết số lẫn toán học hiện đại.
  6. Các phương trình của Navier-Stokes
    Chúng mô tả hình dạng của sóng, xoáy lốc không khí, chuyển động của khí quyển và cả hình thái của các thiên hà trong thời điểm nguyên thủy của vũ trụ. Chúng được Henri Navier và George Stokes đưa ra cách đây 150 năm. Chúng chỉ là sự áp dụng các định luật về chuyển động của Newton vào chất lỏng và chất khí. Tuy nhiên, những phương trình của Navier-Stokes đến nay vẫn là một điều bí ẩn của toán học: người ta vẫn chưa thể giải hay xác định chính xác số nghiệm của phương trình này. “Thậm chí người ta không thể biết là phương trình này có nghiệm hay không” – nhà toán học người Mỹ Charles Fefferman nhấn mạnh – “Điều đó cho thấy hiểu biết của chúng ta về các phương trình này còn hết sức ít ỏi”.
  7. Giả thuyết của Birch và Swinnerton-Dyer
    Những số nguyên nào là nghiệm của phương trình x^2 + y^2 = z^2 ? có những nghiệm hiển nhiên, như 3^2 + 4^2 = 5^2. Và cách đây hơn 2300 năm, Euclide đã chứng minh rằng phương trình này có vô số nghiệm. hiển nhiên vấn đề sẽ không đơn giản như thế nếu các hệ số và số mũ của phương trình này phức tạp hơn… Người ta cũng biết từ 30 năm nay rằng không có phương pháp chung nào cho phép tìm ra số các nghiệm nguyên của các phương trình dạng này. Tuy nhiên, đối với nhóm phương trình quan trọng nhất có đồ thị là các đường cong êlip loại 1, các nhà toán học người Anh Bryan Birch và Peter Swinnerton-Dyer từ đầu những năm 60 đã đưa ra giả thuyết là số nghiệm của phương trình phụ thuộc vào một hàm số f: nếu hàm số f triệt tiêu tại giá trị bằng 1 (nghĩa là nếu f(1)= 0), phương trình có vô số nghiệm. nếu không, số nghiệm là hữu hạn.
    Giả thuyết nói như thế, các nhà toán học cũng nghĩ vậy, nhưng đến giờ chưa ai chứng minh được…

    Người ta thấy vắng bóng ngành Giải tích hàm (Functional analysí) vốn được coi là lãnh vực vương giả của nghiên cứu toán học. Lý do cũng đơn giản : những bài toán quan trọng nhất của Giải tích hàm vừa mới được giải quyết xong, và người ta đang đợi để tìm được những bài toán mới. Một nhận xét nữa : 7 bài toán đặt ra cho thế kỉ 21, mà không phải bài nào cũng phát sinh từ thế kỉ 20. Bài toán P-NP (do Stephen Cook nêu ra năm 1971) cố nhiên là bài toán mang dấu ấn thế kỉ 20 (lôgic và tin học), nhưng bài toán số 4 là giả thuyết Riemann đã đưa ra từ thế kỉ 19. Và là một trong 3 bài toán Hilbert chưa được giải đáp !
    Một giai thoại vui: Vài ngày trước khi 7 bài toán 1 triệu đôla được công bố, nhà toán học Nhật Bản Matsumoto (sống và làm việc ở Paris) tuyên bố mình đã chứng minh được giả thuyết Riemann. Khổ một nỗi, đây là lần thứ 3 ông tuyên bố như vậy. Và cho đến hôm nay, vẫn chưa biết Matsumoto có phải là nhà toán học triệu phú đầu tiên của thế kỉ 21 hay chăng..
9
17 tháng 3 2016

đền tiền thuốc mắt đi ! đọc xong hoa hít mắt rùi

17 tháng 3 2016

hay quá, h em rồi em h lại cho

Lý thuyết số là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà phát triển từ những nghiên cứu của nó.Lý thuyết số có thể chia thành một vài lĩnh vực dựa theo phương pháp giải và các dạng bài toán được xem xét. (Xem Danh sách các chủ đề của lý thuyết số).Cụm từ "số học" cũng được...
Đọc tiếp

Lý thuyết số là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà phát triển từ những nghiên cứu của nó.

Lý thuyết số có thể chia thành một vài lĩnh vực dựa theo phương pháp giải và các dạng bài toán được xem xét. (Xem Danh sách các chủ đề của lý thuyết số).

Cụm từ "số học" cũng được sử dụng để nói đến lý thuyết số. Đây là cụm từ không còn được sử dụng rộng rãi nữa. Tuy nhiên, nó vẫn còn hiện diện trong tên của một số lĩnh vực toán học (hàm số học, số học đường cong elliptic, lý thuyết căn bản của số học). Việc sử dụng cụm từ số học ở đây không nên nhầm lẫn với số học sơ cấp.

Mục lục

1Các lĩnh vực

1.1Lý thuyết số sơ cấp

1.2Lý thuyết số giải tích

1.3Lý thuyết số đại số

1.4Lý thuyết số hình học

1.5Lý thuyết số tổ hợp

1.6Lý thuyết số máy tính

2Lịch sử

2.1Lý thuyết số thời kì Vedic

2.2Lý thuyết số của người Jaina

2.3Lý thuyết số Hellenistic

2.4Lý thuyết số Ấn Độ cổ điển

2.5Lý thuyết số của người Hồi giáo

2.6Lý thuyết số châu Âu ban đầu

2.7Mở đầu lý thuyết số hiện đại

2.8Lý thuyết số về số nguyên tố

2.9Các thành tựu trong thế kỉ 19

2.10Các thành tựu trong thế kỉ 20

3Danh ngôn

4Tham khảo

5Liên kết ngoài

Các lĩnh vực[sửa | sửa mã nguồn]

Lý thuyết số sơ cấp[sửa | sửa mã nguồn]

Trong lý thuyết số sơ cấp, các số nguyên được nghiên cứu mà không cần các kĩ thuật từ các lĩnh vực khác của toán học. Nó nghiên cứu các vấn đề về chia hết, cách sử dụng thuật toán Euclid để tìm ước chung lớn nhất, phân tích số nguyên thành thừa số nguyên tố, việc nghiên cứu các số hoàn thiện và đồng dư.

Rất nhiều vấn đề trong lý thuyết số có thể phát biểu dưới ngôn ngữ sơ cấp, nhưng chúng cần những nghiên cứu sâu sắc và những tiếp cận mới bên ngoài lĩnh vực lý thuyết số để giải quyết.

Một số ví dụ:

Giả thuyết Goldbach nói về việc biểu diễn các số chẵn thành tổng của hai số nguyên tố.

Giả thuyết Catalan (bây giờ là định lý Mihăilescu) nói về các lũy thừa nguyên liên tiếp.

Giả thuyết số nguyên tố sinh đôi nói rằng có vô hạn số nguyên tố sinh đôi

Giả thuyết Collazt nói về một dãy đệ quy đơn giản

Định lý lớn Fermat (nêu lên vào năm 1637, đến năm 1994 mới được chứng minh) nói rằng phương trình {\displaystyle x^{n}+y^{n}=z^{n}}📷 không có nghiệm nguyên khác không với n lớn hơn 2.

Lý thuyết về phương trình Diophantine thậm chí đã được chứng minh là không có phương pháp chung đề giải (Xem Bài toán thứ 10 của Hilbert)

Lý thuyết số giải tích[sửa | sửa mã nguồn]

Lý thuyết giải tích số sử dụng công cụ giải tích và giải tích phức để giải quyết các vần đề về số nguyên. Định lý số nguyên tố và giả thuyết Riemann là các ví dụ. Bài toán Waring(biểu diễn một số nguyên cho trước thành tổng các bình phương, lập phương, v.v...), giả thuyết số nguyên tố sinh đôi và giả thuyết Goldbach cũng đang bị tấn công bởi các phương pháp giải tích. Chứng minh về tính siêu việt của các hằng số toán học, như là π hay e, cũng được xếp vào lĩnh vực lý thuyết giải tích số. Trong khi những phát biểu về các số siêu việt dường như đã bị loại bỏ khỏi việc nghiên cứu về các số nguyên, chúng thực sự nghiên cứu giá trị của các đa thức với hệ số nguyên tại, ví dụ, e; chúng cũng liên quan mật thiết với lĩnh vực xấp xỉ Diophantine, lĩnh vực nghiên cứu một số thực cho trước có thể xấp xỉ bởi một số hữu tỉ tốt tới mức nào.

Lý thuyết số đại số[sửa | sửa mã nguồn]

Trong Lý thuyết số đại số, khái niệm của một số được mở rộng thành các số đại số, tức là các nghiệm của các đa thức với hệ số nguyên. Những thứ này bao gồm những thành phần tương tự với các số nguyên, còn gọi là số nguyên đại số. Với khái niệm này, những tính chất quen thuộc của số nguyên (như phân tích nguyên tố duy nhất) không còn đúng. Lợi thế của những công cụ lý thuyết - Lý thuyết Galois, group cohomology, class field theory, biểu diễn nhóm và hàm L - là nó cho phép lấy lại phần nào trật tự của lớp số mới.

Rất nhiều vấn đề lý thuyết số có thể được giải quyết một cách tốt nhất bởi nghiên cứu chúng theo modulo p với mọi số nguyên tố p (xem các trường hữu hạn). Đây được gọi là địa phương hóa và nó dẫn đến việc xây dựng các số p-adic; lĩnh vực nghiên cứu này được gọi là giải tích địa phương và nó bắt nguồn từ lý thuyết số đại sô.

Lý thuyết số hình học[sửa | sửa mã nguồn]

Lý thuyết số hình học (cách gọi truyền thống là (hình học của các số) kết hợp tất cả các dạng hình học. Nó bắt đầu với định lý Minkowski về các điểm nguyên trong các tập lồi và những nghiên cứu về sphere packing.

Lý thuyết số tổ hợp[sửa | sửa mã nguồn]

Lý thuyết số tổ hợp giải quyết các bài toán về lý thuyết số mà có tư tưởng tổ hợp trong công thức hoặc cách chứng minh của nó. Paul Erdős là người khởi xướng chính của ngành lý thuyết số này. Những chủ đề thông thường bao gồm hệ bao, bài toán tổng-zero, rất nhiều restricted sumset và cấp số cộng trong một tập số nguyên. Các phương pháp đại số hoặc giải tích rất mạnh trong những lĩnh vực này.

Lý thuyết số máy tính[sửa | sửa mã nguồn]

Lý thuyết số máy tính nghiên cứu các thuật toán liên quan đến lý thuyết số. Những thuật toán nhanh chóng để kiểm tra tính nguyên tố và phân tích thừa số nguyên tố có những ứng dụng quan trọng trong mã hóa.

Lịch sử[sửa | sửa mã nguồn]

Lý thuyết số thời kì Vedic[sửa | sửa mã nguồn]

Các nhà toán học Ấn Độ đã quan tâm đến việc tìm nghiệm nguyên của phương trình Diophantine từ thời kì Vedic. Những ứng dụng sớm nhất vào hình học của phương trình Diophantine có thể tìm thấy trong kinh Sulba, được viết vào khoảng giữa thế kỉ thứ 8 và thế kỉ thứ 6 trước Công nguyên. Baudhayana (năm 800 TCN) tìm thấy hai tập nghiệm nguyên dương của một hệ các phương trình Diophantine, và cũng sử dụng hệ phương trình Diophantine với tới bốn ẩn. Apastamba (năm 600) sử dụng hệ phương trình Diophantine với tới năm ẩn.

Lý thuyết số của người Jaina[sửa | sửa mã nguồn]

Ở Ấn Độ, các nhà toán học Jaina đã phát triển lý thuyết số có hệ thống đầu tiên từ thế kỉ thứ 4 trước Công Nguyên tới thế kỉ thứ 2. Văn tự Surya Prajinapti (năm 400 TCN) phân lớp tất cả các số thành ba tập: đếm được, không đếm được và vô hạn. Mỗi tập này lại được phân thành ba cấp:

Đếm được: thấp nhất, trung bình, và cao nhất.

Không đếm được: gần như không đếm được, thật sự không đếm được, và không đếm được một cách không đếm được.

Vô hạn: gần như vô hạn, thật sự vô hạn, vô hạn một cách vô hạn

Những người Jain là những người đầu tiên không chấp nhận ý tưởng các vô hạn đều như nhau. Họ nhận ra năm loại vô hạn khác nhau: vô hạn theo một hoặc hai hướng (một chiều), vô hạn theo diện tích (hai chiều), vô hạn mọi nơi (ba chiều), và vô hạn liên tục (vô số chiều).

Số đếm được cao nhất N của người Jain tương ứng với khái niệm hiện đại aleph-không {\displaystyle \aleph _{0}}📷 (cardinal number của tập vô hạn các số nguyên 1,2,...), the smallest cardinal transfinite number. Người Jain cũng định nghĩa toàn bộ hệ thống các cardinal number, trong đó {\displaystyle \aleph _{0}}📷 là nhỏ nhất.

Trong công trình của người Jain về lý thuyết tập hợp, họ phân biệt hai loại transfinite number cơ bản. Ở cả lĩnh vực vật lý và bản thể học (ontology), sự khác nhau được tạo ra giữa asmkhyata và ananata, giữa vô hạn bị chặn ngặt và vô hạn bị chặn lỏng.

Lý thuyết số Hellenistic[sửa | sửa mã nguồn]

Lý thuyết số là một đề tài ưa thích của các nhà toán học Hellenistic ở Alexandria, Ai Cập từ thế kỉ thứ 3 sau Công Nguyên. Họ đã nhận thức được khái niệm phương trình Diophantine trong rất nhiều trường hợp đặc biệt. Nhà toán học Hellenistic đầu tiên nghiên cứu những phương trình này là Diophantus.

Diophantus cũng đã tìm kiếm một phương pháp để tìm nghiệm nguyên của các phương trình vô định tuyến tính, những phương trình mà thiếu điều kiện đủ để có một tập duy nhất các nghiệm phân biệt. Phương trình {\displaystyle x+y=5}📷 là một phương trình như vậy. Diophantus đã khám phá ra nhiều phương trình vô định có thể biến đổi thành các dạng đã biết mặc dù thậm chí còn không biết được nghiệm cụ thể.

Lý thuyết số Ấn Độ cổ điển[sửa | sửa mã nguồn]

Phương trình Diophantine đã được nghiên cứu một cách sâu sắc bởi các nhà toán học Ân Độ trung cổ. Họ là những người đầu tiên nghiên cứu một cách có hệ thống các phương pháp tìm nghiệm nguyên của phương trình Diophantine. Aryabhata (499) là người đầu tiên tìm ra dạng nghiệm tổng quát của phương trình Diophantine tuyến tính {\displaystyle ay+bx=c}📷, được ghi trong cuốn Aryabhatiya của ông. Thuật toán kuttaka này được xem là một trong những cống hiến quan trọng nhất của Aryabhata trong toán học lý thuyết, đó là tìm nghiệm của phương trình Diophantine bằng liên phân số. Aryabhata đã dùng kĩ thuật này để tìm nghiệm nguyên của các hệ phương trình Diophantine, một bài toán có ứng dụng quan trọng trong thiên văn học. Ông cũng đã tìm ra nghiệm tổng quát đối với phương trình tuyến tính vô định bằng phương pháp này.

Brahmagupta vào năm 628 đã nắm được những phương trình Diophantine phức tạp hơn. Ông sử dụng phương pháp chakravala để giải phương trình Diophantine bậc hai, bao gồm cả các dạng của phương trình Pell, như là {\displaystyle 61x^{2}+1=y^{2}}📷. Cuốn Brahma Sphuta Siddhanta của ông đã được dịch sang tiếng Ả Rập vào năm 773 và sau đó được dịch sang tiếng Latin vào năm 1126. Phương trình {\displaystyle 61x^{2}+1=y^{2}}📷 sau đó đã được chuyển thành một bài toán vào năm 1657 bởi nhà toán học người Pháp Pierre de Fermat. Leonhard Euler hơn 70 năm sau đã tìm được nghiệm tổng quát đối với trường hợp riêng này của phương trình Pell, trong khi nghiệm tổng quát của phương trình Pell đã được tìm ra hơn 100 năm sau đó bởi Joseph Louis Lagrange vào 1767. Trong khi đó, nhiều thế kỉ trước, nghiệm tổng quát của phương trình Pell đã được ghi lại bởi Bhaskara II vào 1150, sử dụng một dạng khác của phương pháp chakravala. Ông cũng đã sử dụng nó để tìm ra nghiệm tổng quát đối với các phương trình vô định bậc hai và phương trình Diophantine bậc hai khác. Phương pháp chakravala của Bhaskara dùng để tìm nghiệm phương trình Pell đơn giản hơn nhiều so với phương pháp mà Lagrange sử dụng 600 năm sau đó. Bhaskara cũng đã tìm được nghiệm của các phương trình vô định bậc hai, bậc ba, bốn và cao hơn. Narayana Pandit đã cải tiến phương pháp chakravala và tìm thêm được các nghiệm tổng quát hơn đối với các phương trình vô định bậc hai và cao hơn khác.

Lý thuyết số của người Hồi giáo[sửa | sửa mã nguồn]

Từ thế kỉ 9, các nhà toán học Hồi giáo đã rất quan tâm đến lý thuyết số. Một trong những nhà toán học đầu tiên này là nhà toán học Ả Rập Thabit ibn Qurra, người đã khám phá ra một định lý cho phép tìm các cặp số bạn bè, tức là các số mà tổng các ước thực sự của số này bằng số kia. Vào thế kỉ 10, Al-Baghdadi đã nhìn vào một ít biến đổi trong định lý của Thabit ibn Qurra.

Vào thế kỉ 10, al-Haitham có thể là người đầu tiên phân loại các số hoàn hảo chẵn (là các số mà tổng các ước thực sự của nó bằng chính nó) thành các số có dạng {\displaystyle 2^{k-1}(2^{k}-1)}📷trong đó {\displaystyle 2^{k}-1}📷 là số nguyên tố. Al-Haytham cũng là người đầu tiên phát biểu định lý Wilson (nói rằng p là số nguyên tố thì {\displaystyle 1+(p-1)!}📷 chia hết cho p). Hiện không rõ ông ta có biết cách chứng minh nó không. Định lý có tên là định lý Wilson vì căn cứ theo một lời chú thích của Edward Waring vào năm 1770 rằng John Wilson là người đầu tiên chú ý đến kết quả này. Không có bằng chứng nào chứng tỏ John Wilson đã biết cách chứng minh và gần như hiển nhiên là Waring cũng không. Lagrange đã đưa ra chứng minh đầu tiên vào 1771.

Các số bạn bè đóng vai trò quan trọng trong toán học của người Hồi giáo. Vào thế kỉ 13, nhà toán học Ba Tư Al-Farisi đã đưa ra một chứng minh mới cho định lý của Thabit ibn Qurra, giới thiệu một ý tưởng mới rất quan trọng liên quan đến phương pháp phân tích thừa số và tổ hợp. Ông cũng đưa ra cặp số bạn bè 17296, 18416 mà người ta vẫn cho là của Euler, nhưng chúng tao biết rằng những số này còn được biết đến sớm hơn cả al-Farisi, có thể bởi chính Thabit ibn Qurra. Vào thế kỉ 17, Muhammad Baqir Yazdi đưa ra cặp số bạn bè 9.363.584 và 9.437.056 rất nhiều năm trước khi Euler đưa ra.

Lý thuyết số châu Âu ban đầu[sửa | sửa mã nguồn]

Lý thuyết số bắt đầu ở Châu Âu vào thế kỉ 16 và 17, với François Viète, Bachet de Meziriac, và đặc biệt là Fermat, mà phương pháp lùi vô hạn của ông là chứng minh tổng quát đầu tiên của phương trình Diophantine. Định lý lớn Fermat được nêu lên như là một bài toán vào năm 1637, và không có lời giải cho đến năm 1994. Fermat cũng nêu lên bài toán {\displaystyle 61x^{2}+1=y^{2}}📷 vào năm 1657.

Vào thế kỉ 18, Euler và Lagrange đã có những cống hiến quan trọng cho lý thuyết số. Euler đã làm một vài công trình về lý thuyết giải tích số, và tình được một nghiệm tổng quát của phương trình {\displaystyle 61x^{2}+1=y^{2}}📷, mà Fermat nêu thành bài toán. Lagrange đã tìm được một nghiệm của phương trình Pell tổng quát hơn. Euler và Lagrange đã giải những phương trình Pell này bằng phương pháp liên phân số, mặc dù nó còn khó hơn phương pháp chakravala của Ấn Độ.

Mở đầu lý thuyết số hiện đại[sửa | sửa mã nguồn]

Khoảng đầu thế kỉ 19 các cuốn sách của Legendre (1798), và Gauss kết hợp thành những lý thuyết có hệ thống đầu tiên ở châu Âu. Cuốn Disquisitiones Arithmeticae (1801) có thể nói là đã mở đầu lý thuyết số hiện đại.

Sự hình thành lý thuyết đồng dư bắt đầu với cuốn Disquisitiones của Gauss. Ông giới thiệu ký hiệu

{\displaystyle a\equiv b{\pmod {c}},}📷

và đã khám phá ra hầu hết trong lĩnh vực này. Chebyshev đã xuất bản vào năm 1847 một công trình bằng tiếng Nga về chủ đề này, và ở Pháp Serret đã phổ biến nó.

Bên cạnh những công trình tổng kết trước đó, Legendre đã phát biểu luật tương hỗ bậc hai. Định lý này, được khám phá ra bởi qui nạp và được diễn đạt bởi Euler, đã được chứng minh lần đầu tiên bởi Legendre trong cuốn Théorie des Nombres của ông (1798) trong những trường hợp đặc biệt. Độc lập với Euler và Legendre, Gauss đã khám phá ra định luật này vào khoảng năm 1795, và là người đầu tiên đưa ra chứng minh tổng quát. Những người cũng có cống hiến quan trọng: Cauchy; Dirichlet với cuốn Vorlesungen über Zahlentheorie kinh điển; Jacobi, người đã đưa ra ký hiệu Jacobi; Liouville, Zeller (?), Eisenstein, Kummer, và Kronecker. Lý thuyết này đã được mở rộng để bao gồm biquadratic reciprocity (Gauss, Jacobi những người đầu tiên chứng minh luật tương hỗ bậc ba, và Kummer).

Gauss cũng đã đưa ra biểu diễn các số thành các dạng bậc hai cơ số hai.

Lý thuyết số về số nguyên tố[sửa | sửa mã nguồn]

Một chủ đề lớn và lặp đi lặp lại trong lý thuyết số đó là nghiên cứu về sự phân bố số nguyên tố. Carl Fiedrich Gauss đã dự đoán kết quả của định lý số nguyên tố khi còn là học sinh trung học.

Chebyshev (1850) đưa ra các chặn cho số số nguyên tố giữa hai giới hạn cho trước. Riemann giới thiệu giải tích phức thành lý thuyết về hàm zeta Riemann. Điều này đã dẫn đến mối quan hệ giữa các số không của hàm zeta và sự phân bố số nguyên tố, thậm chí dẫn tới một chứng minh cho định lý số về số nguyên tố độc lập với Hadamard và de la Vallée Poussin vào năm 1896. Tuy nhiên, một chứng minh sơ cấp đã được đưa ra sau đó bởi Paul Erdős và Atle Selberg vào năm 1949. Ở đây sơ cấp nghĩa là không sử dụng kĩ thuật giải tích phức; tuy nhiên chứng minh vẫn rất đặc biệt và rất khó. Giả thuyết Riemann, đưa ra những thông tin chính xác hơn, vẫn còn là một câu hỏi mở.

Các thành tựu trong thế kỉ 19[sửa | sửa mã nguồn]

Cauchy, Pointsot (1845), Lebesgue (1859, 1868) và đặc biệt là Hermite đã có những cống hiến đối với lĩnh vực này. Trong lý thuyết về các ternary form Eisenstein đã trở thành người đi đầu, và với ông và H. J. S. Smith đó đúng là một bước tiến quan trọng trong lý thuyết về các dạng. Smith đã đưa ra một sự phân loại hoàn chỉnh về các ternary form bậc hai, và mở rộng những nghiên cứu của Gauss về các dạng bậc hai thực (real quadratic form) thành các dạng phức (complex form). Những nghiên cứu về biểu diễn các số thành tổng của 4, 5, 6, 6, 8 bình phương đã được phát triển bởi Eisenstein và lý thuyết này đã được hoàn chỉnh bởi Smith.

Dirichlet là người đầu tiên thuyết trình về lĩnh vực này ở một trường đại học ở Đức. Một trong những cống hiến của ông là sự mở rộng của Định lý lớn Fermat:

{\displaystyle x^{n}+y^{n}\neq z^{n},(x,y,z\neq 0,n>2)}📷

mà Euler và Legendre đã chứng minh cho n = 3, 4 (và từ đó suy ra cho các bội của 3 và 4). Dirichlet đã chỉ ra rằng:{\displaystyle x^{5}+y^{5}\neq az^{5}}📷. Một số nhà toán học Pháp là Borel, Poincaré, những hồi ký của họ rất lớn và có giá trị; Tannery và Stieltjes. Một số người có những cống hiến hàng đầu ở Đức là Kronecker, Kummer, Schering, Bachmann, và Dedekind. Ở Austria cuốn Vorlesungen über allgemeine Arithmetik của Stolz (1885-86) và ở Anh cuốn Lý thuyết số của Mathew (Phần I, 1892) là các công trình tổng quát rất có giá trị. Genocchi, Sylvester, và J. W. L. Glaisher cũng đã có những cống hiến cho lý thuyết này.

Các thành tựu trong thế kỉ 20[sửa | sửa mã nguồn]

Những nhà toán học lớn trong lý thuyết số thế kỉ 20 bao gồm Paul Erdős, Gerd Faltings, G. H. Hardy, Edmund Landau, John Edensor Littlewood, Srinivasa Ramanujan và André Weil.

Các cột mốc trong lý thuyết số thế kỉ 20 bao gồm việc chứng minh Định lý lớn Fermat bởi Andrew Wiles vào năm 1994 và chứng minh Giả thuyết Taniyama–Shimura vào năm 1999

Danh ngôn[sửa | sửa mã nguồn]

Toán học là nữ hoàng của các khoa học và lý thuyết số là nữ hoàng của toán học. — Gauss

Chúa sinh ra các số nguyên, và phần việc còn lại là của con người. — Kronecker

Tôi biết các con số rất đẹp đẽ. Nếu chúng không đẹp, thì chẳng có thứ gì đẹp.— Erdős

0