Cho đường tròn tâm O bán kính R và dây BC cố định không đi qua O, A là điểm chuyển động trên cung lớn BC. Vẽ hai đường cao BE và CF của tam giác ABC cắt nhau tại H.
a) Chứng minh rằng: \(\widehat{AFE}=\widehat{ACB}\)
b) Kẻ bán kinh ON vuông góc với BC tại M. AN cắt BC tại D. Chứng minh rằng: AB.NC = AN.BD
a: góc BEC=góc BFC=90 độ
=>BFEC nội tiếp
=>góc BFE+góc BCE=180 độ
=>góc AFE=góc ACB
b: Xét ΔABD và ΔANC có
góc ABD=góc ANC
góc BAD=góc NAC
=>ΔABD đồng dạng với ΔANC
=>AB/AN=BD/NC
=>AB*NC=AN*BD