K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2023

Điều kiện xác định:

\(\left\{{}\begin{matrix}\dfrac{-5}{3-4x}\ge0\\3-4x\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3-4x< 0\\3-4x\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{3}{4}\\x\ne\dfrac{3}{4}\end{matrix}\right.\)

Vậy để hàm số \(y=\sqrt{\dfrac{-5}{3-4x}}\) xác định thì \(x>\dfrac{3}{4}\)

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

Lời giải:

a. ĐKXĐ: $x^3-x\neq 0$

$\Leftrightarrow x(x-1)(x+1)\neq 0$

$\Leftrightarrow x\neq 0;\pm 1$

Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{0;\pm 1\right\}\)

b.

ĐKXĐ: \(\left\{\begin{matrix} x\geq 0\\ |x|-1\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq \pm 1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq 1\end{matrix}\right.\)

TXĐ:

\([0;+\infty)\setminus \left\{1\right\}\)

c.

ĐKXĐ: \(x^2-1\neq 0\Leftrightarrow x\neq \pm 1\)

TXĐ: \(\mathbb{R}\setminus \left\{\pm 1\right\}\)

NV
23 tháng 10 2021

ĐKXĐ:

a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\)  \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)

b. \(D=R\)

c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)

d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)

29 tháng 6 2019

Đáp án A

Hàm số y = log x − 1 x  xác định khi  x > 0 x − 1 > 0 x − 1 ≠ 1 ⇔ x > 0 x > 1 x ≠ 2 ⇔ x > 1 x ≠ 2

26 tháng 8 2021

TXĐ:`{(7-x>=0),(4x^2-19x+12>0):}`

`<=>{(x<=7),((x-4)(4x-3)>0):}`

`<=>{(x<=7),([(x>4),(x<3/4):}):}`

`=>[(x<3/4),(4<x<=7):}`

`=>D(-oo,3/4) UU (4;7]`