K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2021

a, vì △ABC cân tại A nên tia phân giác AH vừa là trung tuyến ,vừa là đường cao => AHB = 900

△ABH = △ ACH (c.c.c)

ta có: BAC + ABC =900 (mà  BAC = 300)

=> ABC=600

b, vì D là trung điểm của AC và HE nên AECH là hình chữ nhật => AH//CE

trong tam giác AHC có F là trung điểm AH; D là trung điểm của AC

=> Q là trọng tâm của tam giác AHC => \(\frac{HQ}{HD}=\frac{2}{3}\)mà \(HD=\frac{1}{2}HE\)

=> \(\frac{HQ}{HE}=\frac{2}{3X\frac{1}{2}}=\frac{1}{3}\)

5 tháng 5 2021

mai mik thi rồi mik cần gấp lắm giúp mik nha

 

a) Xét ΔABH và ΔACH có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAH}=\widehat{CAH}\)(AH là tia phân giác của \(\widehat{BAC}\))

AH chung

Do đó: ΔABH=ΔACH(c-g-c)

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC
AH chung

Do đó: ΔABH=ΔACH

b: \(\widehat{ABC}=\dfrac{180^0-30^0}{2}=75^0\)

c: Xét tứ giác AHCE có

D là trung điểm của AC

D là trung điểm của HE

Do đó: AHCE là hình bình hành

Suy ra: AH//CE

15 tháng 5 2021

b) Xét ΔADH và ΔCDE có

Góc ADH = Góc EDC ( đối đỉnh )

D là tđ của HE => HD=ED 

D là tđ của AC => AD=DC

=>ΔADH = ΔCDE (cgc)

=> góc DAH = góc ECD ( 2 góc tương ứng )

mà 2 góc trên ở vị trí so le trong 

=>HA// EC 

Xét ΔAHC có

 F là tđ của AH => CF là trung tuyến 

D là tđ của AC => HD là trung tuyến 

mà CF giao vs HD tại Q => Q là trọng tâm 

=> HQ=\(\dfrac{2}{3}\)HD

mà HD=DE (cmt)

=>HQ=\(\dfrac{HD+DE}{3}\)=\(\dfrac{1}{3}HE\)

thế là xong câu b rùi nhé còn còn a thì dễ r bạn tự làm đc hihi

25 tháng 2 2020

A M N B C F H D E I

Thấy cái ý △AMN cân với cái chứng minh BAC = 1/2 MAN cũng ko lên quan lắm. Tham khảo qua ạ tại câu b hơi có vấn đề :(

a) Xét △AHB và △AHC có:

AHB = AHC (= 90o)

AH: chung

AB = AC (△ABC cân)

=> △AHB = △AHC (ch-cgv)

b) Xét △ADM và △ADH có:

ADM = ADH (= 90o)

DM = DH (gt)

AD: chung

=> △ADM = △ADH (2cgv)

=> AM = AH (2 cạnh tương ứng) (1)

Xét △ANE và △AHE có:

AEH = AEN (= 90o)

EH = EN (gt)

AE: chung

=> △ANE = △AHE (2cgv)

=> AN = AH (hai cạnh tương ứng) (2)

Từ (1) và (2) => AM = AN => △AMN cân tại A

Ta có: MAN = MAB + BAH + HAC + CAN

Mà MAB = HAB, HAC = CAN (suy ra được từ các tam giác bằng nhau)

=> MAN = 2BAH + 2 HAC

=> MAN = 2BAC

=> BAC = 1/2MAN

c) Ta có: HAD = HAE (△AHB = △AHC)

Mà HAD = DAM, HAE = EAN

=> HAD + DAM = HAE + EAN

=> HAM = HAN

Gọi giao điểm AH và MN là F

Xét △AFM và △AFN có:

AF: chung

FAM = FAN (cmt)

AM = AN (cmt)

=> △AFM = △AFN (c.g.c)

=> AFM = AFN (2 góc tương ứng)

Mà AFM + AFN = 180o => AFM = AFN = 90o

=> AH vuông góc MN (1)

Gọi giao điểm của DE và AH là I

Xét △ADH và △AEH có:

ADH = AEH (= 90o)

AH: chung

HAD = HAE (△HAB = △HAC)

=> △ADH = △AEH (ch-gn)

=> AD = AE (2 cạnh tương ứng)

Xét △AID và △AIE có:

AI: chung

IAD = IAE (cmt)

AD = AE (cmt)

=> △AID = △AIE (c.g.c)

=> AID = AIE (2 góc tương ứng)

Mà AID + AIE = 180o => AID = AIE = 90o

=> AH vuông góc DE (2)

Từ (1) và (2) => MN // DE

25 tháng 2 2020

d) \(\Delta\)ABC cân tại A  có AH là đường cao

=> AH là đường trung tuyến

=> H là trung điểm BC 

=> BH = HC = BC : 2 = 3 ( cm )

\(\Delta\)ABH vuông tại H  => AB2 - BH2 = AH2 => AH = 4 cm

=> S ( \(\Delta\)ABH ) = \(\frac{1}{2}\)BH . AH =\(\frac{1}{2}\) HD . AB 

=> 3.4 = HD . 5 => HD = 2,4 cm

\(\Delta\)BDH vuông tại D => BD2 = BH2 - HD = 3,24 => BD = 1,8 cm

28 tháng 4 2022

giúp mình với

26 tháng 1 2018

Từng bài 1 thôi nha!

Mình làm bài 3 cho dễ

Bn tự vẽ hình

a) CM tg ABH=tg ACH (ch-cgv)

=> HC=HB=2 góc tương ứng 

Nên H là trung điểm BC

=> HB=HC=BC:2=8:2=4 ; góc BAH= góc CAH

b) Có: tg ABH vuông tại H (AH vuông góc BC)

=> AH2+BH2=AB => AH2+42=52 => AH2=9

Mà AH>O Nên AH=3

c) Xét tg ADH và tg AEH có:

\(\Delta ADH=\Delta AEH\left(ch-gh\right)\hept{\begin{cases}\widehat{ADH}=\widehat{AEH}=90^o\\AHcanhchung\\\widehat{DAH}=\widehat{EAH}\left(\Delta ABH=\Delta ACH\right)\end{cases}}\)

=> HD=HE(2 góc tương ứng)

=> tg HDE cân tại H