K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 12 2022

ĐKXĐ: \(x>0\)

\(log_2\left(x^2+4\right)-log_2x-3=0\)

\(\Leftrightarrow log_2\left(x^2+4\right)=log_2x+3\)

\(\Leftrightarrow log_2\left(x^2+4\right)=log_2\left(9x\right)\)

\(\Leftrightarrow x^2+4=9x\)

\(\Leftrightarrow x^2-9x+4=0\)

\(\Rightarrow x_1+x_2=9\) theo định lý Viet

18 tháng 5 2022

\(\begin{array} {l} 13)\\ n_{HCHO}=\dfrac{1,2}{30}=0,04(mol)\\ HCHO\xrightarrow{+AgNO_3/NH_3,t^o}4Ag\\ n_{Ag}=4n_{HCHO}=0,16(mol)\\ m=0,16.108=17,28(g)\\ \to A\\ 14)\\ X:C_nH_{2n}\\ n_{Br_2}=\dfrac{8}{160}=0,05(mol)\\ C_nH_{2n}+Br_2\to C_nH_{2n}Br_2\\ n_{C_nH_{2n}}=n_{Br_2}=0,05(mol)\\ M_{C_nH_{2n}}=14n=\dfrac{1,4}{0,05}=28(g/mol)\\ n=2\\ X:C_2H_4\\ \to A \end{array}\)

NV
14 tháng 4 2022

14.

A là khẳng định sai, CD không vuông góc SB

(Vì nếu \(CD\perp SB\)  (1); do \(SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\) (2)

(1);(2) \(\Rightarrow CD\perp\left(SAB\right)\Rightarrow CD\perp AB\) (vô lý do \(CD||AB\))

 

29 tháng 3 2022

undefined

Xét \(\Delta HIJ\) vuông tại H:

\(sinr=\dfrac{HJ}{IJ}=\dfrac{HJ}{\sqrt{HI^2+HJ^2}}\)

\(\Rightarrow\dfrac{sini}{sinr}=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{HI^2+HJ^2}}{HJ}=n\)

\(\Rightarrow\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{60^2+HJ^2}}{HJ}=\dfrac{4}{3}\)

\(\Rightarrow HJ=51,25cm\)

Độ dài vệt sáng:

\(y=x+HJ=85,9cm\)

Chọn B

Câu 15: 

Hàm số y=ax+b, với a<>0 nghịch biến trên R khi a<0

Từ đó bạn thay vào thôi

Câu 14: 

Bạn cần biến đổi về dạng y=ax+b(a<>0) rồi sau đó lần lượt thay x=0 và y=0 vào là ra

30 tháng 3 2022

*cái tên* me too :((

20 tháng 3 2022

ảnh mờ quá bn ơi

Câu 14: B

Câu 15: Không có câu nào đúng

Câu 15 đáp án C nhé.

NV
29 tháng 6 2021

Các công thức lượng giác cơ bản liên quan đến góc của lớp 10:

\(sin\left(3\pi-x\right)=sin\left(2\pi+\pi-x\right)=sin\left(\pi-x\right)=sinx\)

\(sin\left(\dfrac{\pi}{2}+x\right)=cosx\Rightarrow sin\left(\dfrac{5\pi}{2}+x\right)=sin\left(2\pi+\dfrac{\pi}{2}+x\right)=sin\left(\dfrac{\pi}{2}+x\right)=cosx\)

\(cos\left(\dfrac{\pi}{2}+x\right)=-sinx\)

\(sin\left(\dfrac{3\pi}{2}+x\right)=sin\left(2\pi-\dfrac{\pi}{2}+x\right)=sin\left(-\dfrac{\pi}{2}+x\right)=-cosx\)

Nên pt tương đương:

\(3sin^2x-2sinx.cosx-5cos^2x=0\)

Với \(cosx=0\) không là nghiệm

Với \(cosx\ne0\) chia 2 vế cho \(cos^2x\)

\(\Rightarrow3tan^2x-2tanx-5=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=-1\\tanx=\dfrac{5}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(\dfrac{5}{3}\right)+k\pi\end{matrix}\right.\)

22 tháng 5 2022

`a)A` có nghĩa `<=>x-1 >= 0 <=>x >= 1`

`b)B=\sqrt{3^2 .2}+\sqrt{2^3}-\sqrt{5^2 .2}`

`<=>B=3\sqrt{2}+2\sqrt{2}-5\sqrt{2}`

`<=>B=0`

`c)` Với `a >= 0,a \ne 1` có:

`C=[a-1]/[\sqrt{a}-1]-[a\sqrt{a}-1]/[a-1]`

`C=[(a-1)(\sqrt{a}+1)-a\sqrt{a}+1]/[(\sqrt{a}-1)(\sqrt{a}+1)]`

`C=[a\sqrt{a}+a-\sqrt{a}-1-a\sqrt{a}+1]/[(\sqrt{a}-1)(\sqrt{a}+1)]`

`C=a/[a-1]`