Ba số thực x,y,z thoả mãn điều kiện
x+y+z=x^2-yz=18
Biết giá trị lớn nhất có thể của x được viết dưới dạng 2√a-b tìm giá trị của a+b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x+y+z=18\)
\(\Leftrightarrow y=18-x-z\)
Thế vô \(x^2-yz=18\) ta được
\(x^2-18z+xz+z^2-18=0\)
\(\Leftrightarrow4x^2+4xz+4z^2-72z-72=0\)
\(\Leftrightarrow\left(4z^2+4xz+x^2\right)-36\left(2z+x\right)+324+\left(3x^2+36x+108\right)-72-324-108=0\)
\(\Leftrightarrow\left(2z+x-18\right)^2+3\left(x+6\right)^2-504=0\)
\(\Leftrightarrow3\left(x+6\right)^2=504-\left(2z+x-18\right)^2\le504\)
\(\Rightarrow\left(x+6\right)^2\le168\)
\(\Rightarrow-2\sqrt{42}-6\le x\le2\sqrt{42}-6\)
\(\Rightarrow\hept{\begin{cases}a=42\\b=6\end{cases}}\)
\(\Rightarrow a+b=42+6=48\)
Ta có: \(x+y+z=18\)
\(\Leftrightarrow y=18-x-z\)
Thế vô \(x^2-yz=18\) ta được
\(x^2-18z+xz+z^2-18=0\)
\(\Leftrightarrow z^2+\left(x-18\right)z-18+x^2=0\)
Để phương trình bậc 2 theo z mà có nghiệm thì:
\(\Delta=\left(x-18\right)^2-4\left(x^2-18\right)\ge0\)
\(\Rightarrow-3x^2-36x+396\ge0\)
\(\Rightarrow\left(x+6\right)^2\le168\)
\(\Rightarrow-2\sqrt{42}-6\le x\le2\sqrt{42}-6\)
\(\Rightarrow\hept{\begin{cases}a=42\\b=6\end{cases}}\)
\(\Rightarrow a+b=42+6=48\)
Ta có : \(\frac{3x^2}{2}+y^2+z^2+yz=1\)
\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
\(\Rightarrow-\sqrt{2}\le B\le\sqrt{2}\)
Vậy \(MinB=-\sqrt{2}\Leftrightarrow x=y=z=-\frac{\sqrt{2}}{3}\)
\(MaxB=\sqrt{2}\Leftrightarrow x=y=z=\frac{\sqrt{2}}{3}\)
a)
\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)
Nên \(x+y+2=0\Rightarrow x+y=-2\)
Ta có :
\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)
Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)
\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)
hay \(M\le-2\)
Dấu "=" xảy ra khi \(x=y=-1\)
Vậy \(Max_M=-2\)khi \(x=y=-1\)
c) ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^ , mình làm bài này với điều kiện x ,y ,z ko âm nhé )
Ta có :
\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)
\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)
\(\Rightarrow y=2-x\)
Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)
\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)
\(\Leftrightarrow z=\frac{4-x}{3}\)
Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :
\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)
\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)
\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))
Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )
Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)