chung minh rang voi moi n thuoc N :
A=1-3+3^2-3^3+3^4-3^5+....+3^98-3^99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)5\(^5\)-5\(^4\)+5\(^3\)=5\(^3\)x5\(^2\)-5\(^3\)x5\(^1\)+5\(^3\)x1=\(5^3\)x(\(5^2-5^1+1\))=\(5^3\)x121
Để chứng minh , ta xét 2 trường hợp
TH1: n là số lẻ
=> (n+8)(n+3)=lẻ x chẵn .( Vì số lẻ cộng với số chẵn ta đc số lẻ , số lẻ cộng với số lẻ ta đc một số chẵn)
Mà số chẵn nào cũng chia hết cho 2
=> (n+8)(n+3) chia hết cho 2.(1)
TH2 : n là số chẵn
=> (n+8)(n+3)= chẵn x lẻ .(Vì số chẵn cộng với số chẵn ta đc số lẻ , số chẵn cộng với số lẻ ta đc một số lẻ)
Mà số chẵn nào cũng chia hết cho 2
=> (n+8)(n+3) chia hết cho 2.(2)
Từ (1) và (2)
=>(n+8)(n+3) luôn chia hết cho 2 với mọi n thuộc N
\(A=\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}+\dfrac{1}{2017^3}\)
\(A=\dfrac{1}{8}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}+\dfrac{1}{2017^3}>\dfrac{1}{8}>\dfrac{1}{12}\left(1\right)\)
Xét thừa số tổng quát: \(\dfrac{1}{n^3}< \dfrac{1}{n^3-n}=\dfrac{1}{n\left(n^2-1\right)}=\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)
Hay:
\(A< \dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{\left(n-1\right)n\left(n+1\right)}+...+\dfrac{1}{2016.2017.2018}\)
\(A< \dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+..+\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}+...+\dfrac{1}{2016.2017}-\dfrac{1}{2017.2018}\right)\)
\(A< \dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2017.2018}\right)=\dfrac{1}{4}-\dfrac{1}{2.2017.2018}< \dfrac{1}{4}< \dfrac{505}{5028}\left(2\right)\)
Từ (1) và (2) ta có đpcm
Mình cảm ơn bạn nhiều lắm Mong bạn có thể giúp đỡ mình trong những cơ hội nhé thank you😊😊😊😊😊