Cho nữa đường tròn (O) đường kính AB = 2R và điểm C nằm trên nữa đường tròn đó. Kẻ CH vuông góc với AB (H khác O). Hai điểm E,F thay đổi trên đường tròn sao cho góc CHE bằng góc CHF. CM : đường thẳng EF luôn đi qua một điểm cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AEB=1/2*sđ cung AB=90 độ
Vì góc DHB+góc DEB=180 độ
nên DHBE nội tiếp
b: Xét ΔADC và ΔACE co
góc ACH=góc AEC(=góc ABC)
góc DAC chung
=>ΔADC đồng dạng với ΔACE
=>DC/EC=AD/AC
=>DC*AC=EC*AD
Vao nhe http://files.hoconline-vn.webnode.vn/200000034-0b01c0bfd5/MOT%20SO%20BAI%20TAP%20ON%20THI%20VAO%20LOP%2010.swf
Vào thử đi : http://files.hoconline-vn.webnode.vn/200000034-0b01c0bfd5/MOT%20SO%20BAI%20TAP%20ON%20THI%20VAO%20LOP%2010.swf
**** cho mình nhé
Đặt chu vi COH là \(P=OC+OH+CH\)
Ta có:
\(P=OC+OH+CH\le OC+\sqrt{2\left(OH^2+CH^2\right)}=OC+\sqrt{2OC^2}=OC\left(1+\sqrt{2}\right)=R\left(1+\sqrt{2}\right)\)
Dấu "=" xảy ra khi \(OH=CH\Rightarrow\Delta OCH\) vuông cân tại H
\(\Rightarrow\widehat{COH}=45^0\) hay C là điểm nằm trên cung AB sao cho OC hợp với AB 1 góc 45 độ
//Phía trên sử dụng BĐT \(a+b\le\sqrt{2\left(a^2+b^2\right)}\) để đánh giá
a) Xét (O) có: AB đường kính (gt), F ϵ (O)
⇒ △ BAF vuông tại F.
⇒ BF vuông góc với AF tại F. hay BF vuông góc với KF
Mà CD vuông góc với KF tại K (gt)
⇒ CD//BF
⇒ 2 cung nhỏ CF và BD chắn 2 dây // của (O) sẽ bằng nhau.
⇒ Đcpcm
b) Ta thấy CDBF là hình thang cân ( CD//BF, CF = BD )
⇒ 2 đường chéo BC = DF. (1)
Mà △ BCE cân tại B ( vì có BH vừa là đ/c, vừa là đường trung tuyến của △)
⇒BC=BE.(2)
Từ (1) và (2) ⇒ DF = BE.
⇒ cung DF = cung BE
Cộng 2 vế trên với cung EF ta đc:
cung DE = cung BF
⇒ DE = BF