Tìm giá trị nhỏ nhất của A=/x-2010/+/x-2012/+/y-2013/+/x-2014/+2011
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
\(=\left(\left|x-2011\right|+\left|2015-x\right|\right)+\left(\left|x-2012\right|+\left|2014-x\right|\right)+\left|x-2013\right|\)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) , dấu "=" xảy ra khi a,b cùng dấu. Ta có : \(\left|x-2011\right|+\left|2015-x\right|\ge\left|x-2011+2015-x\right|=4\)
\(\left|x-2012\right|+\left|2014-x\right|\ge\left|x-2012+2014-x\right|=2\)
\(\left|x-2013\right|\ge0\)
\(\Rightarrow A\ge4+2+0=6\)
Dấu "=" xảy ra khi \(\begin{cases}2011\le x\le2015\\2012\le x\le2014\\x=2013\end{cases}\) \(\Leftrightarrow x=2013\)
Vậy A đạt giá trị nhỏ nhất bằng 6 tại x = 2013
\(A=\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
\(=\left(\left|x-2011\right|+\left|x-2015\right|\right)+\left(\left|x-2012\right|+\left|x-2014\right|\right)+\left|x-2013\right|\)
Đặt \(B=\left|x-2011\right|+\left|x-2015\right|\)
\(=\left|x-2011\right|+\left|2015-x\right|\ge\left|x-2011+2015-x\right|=4\left(1\right)\)
Dấu"=" xảy ra \(\Leftrightarrow\left(x-2011\right)\left(2015-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-2011\ge0\\2015-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2011< 0\\2015-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2011\\x\le2015\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2011\\x>2015\end{cases}\left(loai\right)}\)
\(\Leftrightarrow2011\le x\le2015\)
Đặt \(C=\left|x-2012\right|+\left|x-2014\right|\)
\(=\left|x-2012\right|+\left|2014-x\right|\ge\left|x-2012+2014-x\right|=2\left(2\right)\)
Dấu"="xảy ra \(\Leftrightarrow\left(x-2012\right)\left(2014-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-2012\ge0\\2014-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2012< 0\\2014-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2012\\x\le2014\end{cases}}\)hoặc\(\hept{\begin{cases}x< 2012\\x>2014\end{cases}\left(loai\right)}\)
\(\Leftrightarrow2012\le x\le2014\)
Ta có: \(\left|x-2013\right|\ge0;\forall x\left(3\right)\)
Dấu"="Xảy ra \(\Leftrightarrow\left|x-2013\right|=0\)
\(\Leftrightarrow x=2013\)
Từ (1),(2) và (3) \(\Rightarrow B+C+\left|x-2013\right|\ge6\)
Hay \(A\ge6\)
Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}2011\le x\le2015\\2012\le x\le2014\\x=2013\end{cases}}\)\(\Leftrightarrow x=2013\)
Vậy \(A_{min}=6\Leftrightarrow x=2013\)
\(\frac{x+4}{2010}+\frac{x+3}{2011}=\frac{x+2}{2012}+\frac{x+1}{2013}\)
\(\Leftrightarrow\left(\frac{x+4}{2010}+1\right)+\left(\frac{x+3}{2011}+1\right)=\left(\frac{x+2}{2012}+1\right)+\left(\frac{x+1}{2013}+1\right)\)
\(\Leftrightarrow\frac{x+2014}{2010}+\frac{x+2014}{2011}=\frac{x+2014}{2012}+\frac{x+2014}{2013}\)
\(\Leftrightarrow\frac{x+2014}{2010}+\frac{x+2014}{2011}-\frac{x+2014}{2012}-\frac{x+2014}{2013}=0\)
\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)
\(\Leftrightarrow x+2014=0\)
\(\Leftrightarrow x=-2014\)
V...
Ta có :
x = 2013 => x + 1 = 2014
x2013 - 2014.x2012 + 2014.x2011 - 2010 + 2014x - 2014
= x2013 - (x + 1).x2012 + (x + 1).x2011 - 2010 + (x + 1)x - 2014
= x2013 - x2013 - x2012 + x2012 + x2011 - 2010 + x2 + x - 2014
= x2011 + x2 - x - 4024
Làm thì thấy nó có vấn đề ?????
ta có : x = 2013
=> x + 1 = 2014
Thay 2014 = x + 1 vào biểu thức , sau đó phân phối , là ra
\(l=2010+\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|\)
\(=2010+\left|x-2011\right|+\left|2013-x\right|+\left|x-2012\right|\)
\(\ge2010+\left|x-2011+2013-x\right|+\left|x-2012\right|\)
\(\)\(=2010+2+\left|x-2012\right|\)
\(=2012+\left|x-2012\right|\ge2012\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x-2011\ge0\\x-2012=0\\x-2013\le0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2011\\x=2012\\x\le2013\end{matrix}\right.\Rightarrow x=2012\)
Vậy \(min_l=2012\) khi \(x=2012\)