K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2016

a. Từ giả thiết ta có x > y.

\(2^x-2^y=2^4\Rightarrow2^y\left(2^{x-y}-1\right)=2^4\). Do \(2^{x-y}-1\) không chia hết cho 2 với mọi x khác y nên để thỏa mãn đẳng thức trên thì  \(2^{x-y}-1=1\Rightarrow x-y=1\)

Khi đó \(2^y=2^4\Rightarrow y=4\Rightarrow x=5.\)

b . Do vai trò x, y như nhau nên giả sử \(x\ge y.\)

\(2^x+2^y=2^4\Rightarrow2^y\left(2^{x-y}+1\right)=2^4\) Lập luận tương tự ta có \(2^{x-y}+1=1\Rightarrow x=y\).

Khi đó \(2.2^y=2^4\Rightarrow y=3\Rightarrow x=3.\)

Bài 2: 

a: Ta có: \(2^{x+1}\cdot3^y=12^x\)

\(\Leftrightarrow2^{x+1}\cdot3^y=2^{2x}\cdot3^x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=2x\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

10 tháng 2 2021

a) 

\(\left(x+1\right)\left(y-2\right)=5\\ \Rightarrow\left(x+1\right),\left(y-2\right)\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Ta có bảng:

x+11-15-5
y-25-51-1
x0-24-6
y7-331

Vậy \(\left(x;y\right)=\left(0;7\right),\left(-2;-3\right),\left(4;3\right),\left(-6;1\right)\)

 

 

10 tháng 2 2021

b) 

\(\left(x-5\right)\left(y+4\right)=-7\\ \Rightarrow\left(x-5\right),\left(y+4\right)\inƯ\left(-7\right)=\left\{1;-1;7;-7\right\}\)

Ta có bảng:

x-51-17-7
y+4-77-11
x6412-2
y-113-5-3

Vậy \(\left(x;y\right)=\left(6;-11\right),\left(4;3\right),\left(12;-5\right),\left(-2;-3\right)\)

 

a: x/2=-5/y

=>xy=-10

=>\(\left(x,y\right)\in\left\{\left(1;-10\right);\left(-10;1\right);\left(-1;10\right);\left(10;-1\right);\left(2;-5\right);\left(-5;2\right);\left(-2;5\right);\left(5;-2\right)\right\}\)

b: =>xy=12

mà x>y>0

nên \(\left(x,y\right)\in\left\{\left(12;1\right);\left(6;2\right);\left(4;3\right)\right\}\)

c: =>(x-1)(y+1)=3

=>\(\left(x-1;y+1\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(2;2\right);\left(4;0\right);\left(0;-4\right);\left(-2;-2\right)\right\}\)

d: =>y(x+2)=5

=>\(\left(x+2;y\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(-1;5\right);\left(3;1\right);\left(-3;-5\right);\left(-7;-1\right)\right\}\)

Bài 1:

a: Ta có: \(48751-\left(10425+y\right)=3828:12\)

\(\Leftrightarrow y+10425=48751-319=48432\)

hay y=38007

b: Ta có: \(\left(2367-y\right)-\left(2^{10}-7\right)=15^2-20\)

\(\Leftrightarrow2367-y=1222\)

hay y=1145

Bài 2: 

Ta có: \(8\cdot6+288:\left(x-3\right)^2=50\)

\(\Leftrightarrow288:\left(x-3\right)^2=2\)

\(\Leftrightarrow\left(x-3\right)^2=144\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=12\\x-3=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\\x=-9\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
30 tháng 9 2021

Lời giải:

a. Áp dụng TCDTSBN:

\(\frac{x}{y}=\frac{2}{5}\Rightarrow \frac{x}{2}=\frac{y}{5}=\frac{2x}{4}=\frac{y}{5}=\frac{2x-y}{4-5}=\frac{3}{-1}=-3\)

$\Rightarrow x=-3.2=-6; y=-3.5=-15$

b. Áp dụng TCDTSBN:

$\frac{x}{2}=\frac{y}{3}; \frac{y}{4}=\frac{z}{7}$

$\Rightarrow \frac{x}{8}=\frac{y}{12}=\frac{z}{21}$

$=\frac{2x}{16}=\frac{y}{12}=\frac{z}{21}=\frac{2x-y+z}{16-12+21}=\frac{50}{25}=2$

$\Rightarrow x=8.2=16; y=2.12=24; z=2.21=42$

c.

$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$

$\Rightarrow \frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{2z^2}{32}$

$=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4$

$\Rightarrow x^2=4.4=16; y^2=9.4=36; z^2=4.4=16$

Kết hợp với đkxđ suy ra:
$(x,y,z)=(4,6,4); (-4; -6; -4)$

30 tháng 9 2021

Em cảm ơn ạ