K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2021

giúp mik vs,ai xong trước mik tick cho

 

25 tháng 8 2021

a .

Xét ΔABO;ΔBAMΔABO;ΔBAM có :

ˆOAB=ˆMBA(slt)AB(chung)ˆOBA=ˆMAB(slt)⇒ΔAOB=ΔBMA(g−c−g)⇒AM=BO;OA=BM

3 tháng 3 2022

a. Xét tam giác AHO và tam giác BKO, có:

\(\widehat{BKO}=\widehat{AHO}=90^0\)

\(\widehat{O}:chung\)

Vậy tam giác AHO đồng dạng tam giác BKO ( g.g )

b.Xét tam giác EAK và tam giác EBH, có:

\(\widehat{AEK}=\widehat{BEH}\) ( đối đỉnh )

\(\widehat{AKE}=\widehat{BHE}=90^0\)

Vậy tam giác EAK đồng dạng tam giác EBH ( g.g )

\(\Rightarrow\dfrac{EK}{EH}=\dfrac{EA}{EB}\)

\(\Rightarrow EK.EB=EA.EH\)

c.Áp dụng định lý pitago vào tam giác vuông OAH, có:

\(OA^2=OH^2+AH^2\)

\(\Rightarrow AH=\sqrt{OA^2-OH^2}=\sqrt{5^2-3^2}=\sqrt{16}=4cm\)

Ta có: tam giác AHO đồng dạng tam giác BKO

\(\Rightarrow\dfrac{OA}{OB}=\dfrac{AH}{BK}\)

\(\Leftrightarrow\dfrac{5}{4}=\dfrac{4}{BK}\)

\(\Leftrightarrow5BK=16\)

\(\Leftrightarrow BK=\dfrac{16}{5}cm\)

NV
3 tháng 3 2022

Đề bài sai ngay từ câu a, hai tam giác này đồng dạng chứ ko bằng nhau (chúng chỉ bằng nhau khi E nằm trên tia phân giác trong góc xOy)

9 tháng 1 2022

 Xét tứ giác BMOA:

+ BM // OA (b // Oy).

+ AM // OB (a // Ox).

\(\Rightarrow\) Tứ giác BMOA là hình bình hành (dhnb).

\(\Rightarrow\widehat{AMB}=\widehat{BOA}\) (Tính chất hình bình hành).

hay \(\Rightarrow\widehat{AMB}=\widehat{xOy.}\)

15 tháng 3 2018

a, Chỉ ra |OI – OK| < IK < OI + OK => (1) và (k) luôn cắt nhau

b, Do OI=NK, OK=IM => OM=ON

Mặt khác OMCN là hình chữ nhật => OMCN là hình vuông

c, Gọi{L} = KB ∩ MC, {P} = IBNC => OKBI là Hình chữ nhật và BNMI là hình vuông

=> ∆BLC = ∆KOI

=>  L B C ^ = O K I ^ = B I K ^

mà  B I K ^ + I B A ^ = 90 0

L B C ^ + L B I ^ + I B A ^ = 180 0

d, Có OMCN là hình vuông cạnh a cố định

=> C cố định và AB luôn đi qua điểm C

Bài 1: (4,0 điểm). Cho biểu thức a) Rút gọn biểu thức P.b) Tìm x để .c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.Bài 2: (4,5 điểm). a) Giải phương trình : .b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .Bài 3: (4,0 điểm). a) Tìm tất cả các cặp số nguyên (x; y) thỏa...
Đọc tiếp

Bài 1: (4,0 điểm). Cho biểu thức 
a) Rút gọn biểu thức P.
b) Tìm x để .
c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.
Bài 2: (4,5 điểm). 
a) Giải phương trình : .
b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8
c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .
Bài 3: (4,0 điểm). 
a) Tìm tất cả các cặp số nguyên (x; y) thỏa mãn: y(x – 1) = x2 + 2
b) Chứng minh rằng nếu các số nguyên a, b, c thỏa mãn b2 – 4ac và b2 + 4ac đồng thời là các số chính phương thì abc  30. 
Bài 4: (6,0 điểm). 
1) Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E, EM cắt BC tại I.
a) Chứng minh EA.EB = ED.EC.
b) Chứng minh .
c) Chứng minh BM.BD + CM.CA = BC2.
d) Vẽ đường thẳng vuông góc với AB tại B, đường thẳng vuông góc với CD tại C, chúng cắt nhau tại K. Chứng minh MK luôn đi qua một điểm cố định khi M thay đổi.
e) Đặt BC = a; EC = b; BE = c; AD = a’; AI = b’; DI = c’.
Chứng minh .
2) Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất 
Bài 5: (1,5 điểm). Cho a, b, c > 0 thỏa mãn: a2 + b2 + c2 = 1. Chứng minh rằng 

(1)/(1-ab)+(1)/(1-bc)+(1)/(1-ca)<=9/2

 

2
8 tháng 4 2016

Bạn tự giải luôn đi!

8 tháng 4 2016

dài quá, ko muốn giải